--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-finetuned results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9385 - name: F1 type: f1 value: 0.9383538787245842 --- # distilbert-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1775 - Accuracy: 0.9385 - F1: 0.9384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.2451 | 0.9225 | 0.9227 | | 0.4827 | 2.0 | 500 | 0.1655 | 0.934 | 0.9335 | | 0.4827 | 3.0 | 750 | 0.1558 | 0.9365 | 0.9372 | | 0.1191 | 4.0 | 1000 | 0.1482 | 0.9375 | 0.9374 | | 0.1191 | 5.0 | 1250 | 0.1599 | 0.9365 | 0.9366 | | 0.0775 | 6.0 | 1500 | 0.1539 | 0.9375 | 0.9378 | | 0.0775 | 7.0 | 1750 | 0.1657 | 0.937 | 0.9366 | | 0.0525 | 8.0 | 2000 | 0.1688 | 0.9385 | 0.9385 | | 0.0525 | 9.0 | 2250 | 0.1811 | 0.9405 | 0.9406 | | 0.0383 | 10.0 | 2500 | 0.1775 | 0.9385 | 0.9384 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1