adaamko commited on
Commit
6652c4c
·
verified ·
1 Parent(s): 104d449

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -168
README.md CHANGED
@@ -1,199 +1,107 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
 
 
 
 
 
 
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
 
 
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - fr
5
+ base_model:
6
+ - EuroBERT/EuroBERT-610m
7
+ pipeline_tag: token-classification
8
+ tags:
9
+ - token classification
10
+ - hallucination detection
11
+ - transformers
12
+ - question answer
13
+ datasets:
14
+ - KRLabsOrg/ragtruth-fr-translated
15
  ---
16
 
17
+ # LettuceDetect: French Hallucination Detection Model
18
 
19
+ <p align="center">
20
+ <img src="https://github.com/KRLabsOrg/LettuceDetect/blob/feature/cn_llm_eval/assets/lettuce_detective_multi.png?raw=true" alt="LettuceDetect Logo" width="400"/>
21
+ </p>
22
 
23
+ **Model Name:** KRLabsOrg/lettucedect-610m-eurobert-fr-v1
24
+ **Organization:** KRLabsOrg
25
+ **Github:** https://github.com/KRLabsOrg/LettuceDetect
26
 
27
+ ## Overview
28
 
29
+ LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for multilingual Retrieval-Augmented Generation (RAG) applications. This model is built on **EuroBERT-610M**, which has been specifically chosen for its extended context support (up to **8192 tokens**) and strong multilingual capabilities. This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ **This is our French large model utilizing EuroBERT-610M architecture**
32
 
33
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ - **Architecture:** EuroBERT-610M with extended context support (up to 8192 tokens)
36
+ - **Task:** Token Classification / Hallucination Detection
37
+ - **Training Dataset:** RagTruth-FR (translated from the original RAGTruth dataset)
38
+ - **Language:** French
39
 
40
+ ## How It Works
41
 
42
+ The model is trained to identify tokens in the French answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated.
43
 
44
+ ## Usage
45
 
46
+ ### Installation
47
 
48
+ Install the 'lettucedetect' repository
49
 
50
+ ```bash
51
+ pip install lettucedetect
52
+ ```
53
 
54
+ ### Using the model
55
 
56
+ ```python
57
+ from lettucedetect.models.inference import HallucinationDetector
58
 
59
+ # For a transformer-based approach:
60
+ detector = HallucinationDetector(
61
+ method="transformer",
62
+ model_path="KRLabsOrg/lettucedect-610m-eurobert-fr-v1",
63
+ lang="fr",
64
+ trust_remote_code=True
65
+ )
66
 
67
+ contexts = ["La France est un pays d'Europe. La capitale de la France est Paris. La population de la France est de 67 millions."]
68
+ question = "Quelle est la capitale de la France? Quelle est la population de la France?"
69
+ answer = "La capitale de la France est Paris. La population de la France est de 69 millions."
70
 
71
+ # Get span-level predictions indicating which parts of the answer are considered hallucinated.
72
+ predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans")
73
+ print("Prédictions:", predictions)
74
 
75
+ # Prédictions: [{'start': 36, 'end': 81, 'confidence': 0.9726481437683105, 'text': ' La population de la France est de 69 millions.'}]
76
+ ```
77
 
78
+ ## Performance
79
 
80
+ **Results on Translated RAGTruth-FR**
81
 
82
+ We evaluate our French models on translated versions of the [RAGTruth](https://aclanthology.org/2024.acl-long.585/) dataset. The EuroBERT-610M French model achieves an F1 score of 73.13%, significantly outperforming prompt-based methods like GPT-4.1-mini (62.37%) with a substantial improvement of +10.76 percentage points.
83
 
84
+ For detailed performance metrics, see the table below:
85
 
86
+ | Language | Model | Precision (%) | Recall (%) | F1 (%) | GPT-4.1-mini F1 (%) | Δ F1 (%) |
87
+ |----------|-----------------|---------------|------------|--------|---------------------|----------|
88
+ | French | EuroBERT-210M | 58.86 | 74.34 | 65.70 | 62.37 | +3.33 |
89
+ | French | EuroBERT-610M | **67.08** | **80.38** | **73.13** | 62.37 | **+10.76** |
90
 
91
+ The 610M model offers the best performance with over 7 percentage points improvement in F1 score compared to the 210M model. It particularly excels in recall, detecting more hallucinations with an 80.38% recall rate.
92
 
93
+ ## Citing
94
 
95
+ If you use the model or the tool, please cite the following paper:
96
 
97
+ ```bibtex
98
+ @misc{Kovacs:2025,
99
+ title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
100
+ author={Ádám Kovács and Gábor Recski},
101
+ year={2025},
102
+ eprint={2502.17125},
103
+ archivePrefix={arXiv},
104
+ primaryClass={cs.CL},
105
+ url={https://arxiv.org/abs/2502.17125},
106
+ }
107
+ ```