---
license: mit
language:
- de
base_model:
- EuroBERT/EuroBERT-610m
pipeline_tag: token-classification
tags:
- token classification
- hallucination detection
- transformers
- question answer
datasets:
- KRLabsOrg/ragtruth-de-translated
---
# LettuceDetect: German Hallucination Detection Model
**Model Name:** KRLabsOrg/lettucedect-610m-eurobert-de-v1
**Organization:** KRLabsOrg
**Github:** https://github.com/KRLabsOrg/LettuceDetect
## Overview
LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for multilingual Retrieval-Augmented Generation (RAG) applications. This model is built on **EuroBERT-610M**, which has been specifically chosen for its extended context support (up to **8192 tokens**) and strong multilingual capabilities. This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context.
**This is our German large model utilizing EuroBERT-610M architecture**
## Model Details
- **Architecture:** EuroBERT-610M with extended context support (up to 8192 tokens)
- **Task:** Token Classification / Hallucination Detection
- **Training Dataset:** RagTruth-DE (translated from the original RAGTruth dataset)
- **Language:** German
## How It Works
The model is trained to identify tokens in the German answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated.
## Usage
### Installation
Install the 'lettucedetect' repository
```bash
pip install lettucedetect
```
### Using the model
```python
from lettucedetect.models.inference import HallucinationDetector
# For a transformer-based approach:
detector = HallucinationDetector(
method="transformer",
model_path="KRLabsOrg/lettucedect-610m-eurobert-de-v1",
lang="de",
trust_remote_code=True
)
contexts = ["Frankreich ist ein Land in Europa. Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 67 Millionen."]
question = "Was ist die Hauptstadt von Frankreich? Wie groß ist die Bevölkerung Frankreichs?"
answer = "Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 69 Millionen."
# Get span-level predictions indicating which parts of the answer are considered hallucinated.
predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans")
print("Predictions:", predictions)
# Predictions: [{'start': 41, 'end': 88, 'confidence': 0.9873546123504639, 'text': ' Die Bevölkerung Frankreichs beträgt 69 Millionen.'}]
```
## Performance
**Results on Translated RAGTruth-DE**
We evaluate our German models on translated versions of the [RAGTruth](https://aclanthology.org/2024.acl-long.585/) dataset. The EuroBERT-610M German model achieves an F1 score of 74.95%, significantly outperforming prompt-based methods like GPT-4.1-mini (60.91%) with a substantial improvement of +14.04 percentage points.
For detailed performance metrics across different languages, see the table below:
| Language | Model | Precision (%) | Recall (%) | F1 (%) | GPT-4.1-mini F1 (%) | Δ F1 (%) |
|----------|-----------------|---------------|------------|--------|---------------------|----------|
| German | EuroBERT-210M | 66.70 | 66.70 | 66.70 | 60.91 | +5.79 |
| German | EuroBERT-610M | **77.04** | **72.96** | **74.95** | 60.91 | **+14.04** |
While the 610M variant requires more computational resources, it delivers substantially higher performance with over 8 percentage points improvement in F1 score compared to the 210M model.
### Manual Validation
We performed additional validation on a manually reviewed set of 300 examples covering all task types from the data (QA, summarization, data-to-text). The EuroBERT-610M German model showed strong performance with an F1 score of 71.79% on this curated dataset.
| Model | Precision (%) | Recall (%) | F1 (%) |
|---------------|---------------|------------|--------|
| EuroBERT-210M | 68.32 | 68.32 | 68.32 |
| EuroBERT-610M | **74.47** | 69.31 | **71.79** |
## Citing
If you use the model or the tool, please cite the following paper:
```bibtex
@misc{Kovacs:2025,
title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
author={Ádám Kovács and Gábor Recski},
year={2025},
eprint={2502.17125},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.17125},
}
```