--- license: mit language: - de base_model: - EuroBERT/EuroBERT-610m pipeline_tag: token-classification tags: - token classification - hallucination detection - transformers - question answer datasets: - KRLabsOrg/ragtruth-de-translated --- # LettuceDetect: German Hallucination Detection Model

LettuceDetect Logo

**Model Name:** KRLabsOrg/lettucedect-610m-eurobert-de-v1 **Organization:** KRLabsOrg **Github:** https://github.com/KRLabsOrg/LettuceDetect ## Overview LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for multilingual Retrieval-Augmented Generation (RAG) applications. This model is built on **EuroBERT-610M**, which has been specifically chosen for its extended context support (up to **8192 tokens**) and strong multilingual capabilities. This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context. **This is our German large model utilizing EuroBERT-610M architecture** ## Model Details - **Architecture:** EuroBERT-610M with extended context support (up to 8192 tokens) - **Task:** Token Classification / Hallucination Detection - **Training Dataset:** RagTruth-DE (translated from the original RAGTruth dataset) - **Language:** German ## How It Works The model is trained to identify tokens in the German answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated. ## Usage ### Installation Install the 'lettucedetect' repository ```bash pip install lettucedetect ``` ### Using the model ```python from lettucedetect.models.inference import HallucinationDetector # For a transformer-based approach: detector = HallucinationDetector( method="transformer", model_path="KRLabsOrg/lettucedect-610m-eurobert-de-v1", lang="de", trust_remote_code=True ) contexts = ["Frankreich ist ein Land in Europa. Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 67 Millionen."] question = "Was ist die Hauptstadt von Frankreich? Wie groß ist die Bevölkerung Frankreichs?" answer = "Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 69 Millionen." # Get span-level predictions indicating which parts of the answer are considered hallucinated. predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans") print("Predictions:", predictions) # Predictions: [{'start': 41, 'end': 88, 'confidence': 0.9873546123504639, 'text': ' Die Bevölkerung Frankreichs beträgt 69 Millionen.'}] ``` ## Performance **Results on Translated RAGTruth-DE** We evaluate our German models on translated versions of the [RAGTruth](https://aclanthology.org/2024.acl-long.585/) dataset. The EuroBERT-610M German model achieves an F1 score of 74.95%, significantly outperforming prompt-based methods like GPT-4.1-mini (60.91%) with a substantial improvement of +14.04 percentage points. For detailed performance metrics across different languages, see the table below: | Language | Model | Precision (%) | Recall (%) | F1 (%) | GPT-4.1-mini F1 (%) | Δ F1 (%) | |----------|-----------------|---------------|------------|--------|---------------------|----------| | German | EuroBERT-210M | 66.70 | 66.70 | 66.70 | 60.91 | +5.79 | | German | EuroBERT-610M | **77.04** | **72.96** | **74.95** | 60.91 | **+14.04** | While the 610M variant requires more computational resources, it delivers substantially higher performance with over 8 percentage points improvement in F1 score compared to the 210M model. ### Manual Validation We performed additional validation on a manually reviewed set of 300 examples covering all task types from the data (QA, summarization, data-to-text). The EuroBERT-610M German model showed strong performance with an F1 score of 71.79% on this curated dataset. | Model | Precision (%) | Recall (%) | F1 (%) | |---------------|---------------|------------|--------| | EuroBERT-210M | 68.32 | 68.32 | 68.32 | | EuroBERT-610M | **74.47** | 69.31 | **71.79** | ## Citing If you use the model or the tool, please cite the following paper: ```bibtex @misc{Kovacs:2025, title={LettuceDetect: A Hallucination Detection Framework for RAG Applications}, author={Ádám Kovács and Gábor Recski}, year={2025}, eprint={2502.17125}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.17125}, } ```