--- datasets: - KBlueLeaf/danbooru2023-sqlite language: - en library_name: diffusers --- # Kohaku XL Gamma A SDXL anime base model aims to create unique artworks.
--- ## Introduction This model can be seen as a derivative of Animagine XL 3.0 project. Basically I'm collaborating with Linaqruf for making better Anime base model (and it is obvious that we have different goal/target) We share our models and technique to improve our models' quality. And that is also how this model been created. ### Base7 Kohaku-XL base7 is resumed from beta7 and use same dataset that beta series have used. But this time I use my own metadata system to create captions. (Can be taken as advanced version of what linaqruf used, will open source it soon) The metadata database can be downloaded here: KBlueLeaf/danbooru2023-sqlite ยท Datasets at Hugging Face Trainin details: LR: 8e-6/2e-6 Scheduler: constant with warmup Batch size: 128 (batch size 4 * grad acc 16 * gpu count 2) ### Gamma rev1 Kohaku-XL Gamma rev1 is a merged model which combine the learned diff from anxl3 and kohaku xl base 7. With this forumla: gamma rev1 = beta7 + 0.8 * (anxl3 - anxl2) + 0.5 * (base7 - beta7) --- ## Usage This model use my own system for quality tags or something like that. So although this model combine the diff weight from anxl3, I will still recommend user to use mine (or both) tagging system. The format of prompt is as same as anxl3. (You can check the sample images I post) Rating tags: * General: safe * Sensitive: sensitive * Questionable: nsfw * Explicit: explicit, nsfw Quality tags (Better to worse): * Masterpiece * best quality * great quality * good quality * normal quality * low quality * worst quality Year tags (New to Old): * newest * recent * mid * early * old You may meet some subtle mosaic-like artifact, that may be caused by high-lr or bad resizing/image encoding. I will try to fix it in next version. For now, try to use R-ESRGAN anime6b or SCUNet models for fixing it. --- ## Future plan Since my dataset have some resize/webp artifacts that will harm the models. I will recreate my dataset based on my new system (and opensource it once I done it). The next plan is to train model on larger (3M-6M) dataset with better configuration (which will require A100s and I plan to spend about 2000-10000 USD on it, if you like my works, consider to sponsor me via buy-me-a-coffee or some BTC-sutff)