--- library_name: transformers language: - da license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - alexandrainst/ftspeech metrics: - wer model-index: - name: Whisper small FTSpeech - Julie results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ftspeech type: alexandrainst/ftspeech args: 'split: test' metrics: - name: Wer type: wer value: 19.463820660777202 --- # Whisper small FTSpeech - Julie This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the ftspeech dataset. It achieves the following results on the evaluation set: - Loss: 0.2781 - Wer: 19.4638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4214 | 0.0080 | 500 | 0.4317 | 26.8590 | | 0.3568 | 0.0161 | 1000 | 0.3763 | 24.5151 | | 0.3443 | 0.0241 | 1500 | 0.3443 | 23.0618 | | 0.3218 | 0.0321 | 2000 | 0.3275 | 22.0048 | | 0.2851 | 0.0402 | 2500 | 0.3139 | 21.2409 | | 0.2638 | 0.0482 | 3000 | 0.3021 | 20.4187 | | 0.2515 | 0.0562 | 3500 | 0.2943 | 20.2420 | | 0.2692 | 0.0643 | 4000 | 0.2864 | 19.9020 | | 0.2503 | 0.0723 | 4500 | 0.2806 | 19.6671 | | 0.2396 | 0.0803 | 5000 | 0.2781 | 19.4638 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.21.0