--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - alexandrainst/ftspeech metrics: - wer model-index: - name: Whisper Large FTSpeech - Your Name results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ftspeech type: alexandrainst/ftspeech args: 'split: test' metrics: - name: Wer type: wer value: 55.483870967741936 --- # Whisper Large FTSpeech - Your Name This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the ftspeech dataset. It achieves the following results on the evaluation set: - Loss: 1.8143 - Wer: 55.4839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0 | 1000.0 | 1000 | 1.2419 | 47.0968 | | 0.0 | 2000.0 | 2000 | 1.5725 | 50.9677 | | 0.0 | 3000.0 | 3000 | 1.7241 | 54.8387 | | 0.0 | 4000.0 | 4000 | 1.8143 | 55.4839 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.21.0