File size: 11,546 Bytes
e6fb3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
library_name: peft
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-ner-qlorafinetune-runs-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large-ner-qlorafinetune-runs-colab

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0806
- Precision: 0.9518
- Recall: 0.9720
- F1: 0.9618
- Accuracy: 0.9821

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2135
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.0785        | 0.0654 | 20   | 1.0950          | 0.5789    | 0.0911 | 0.1574 | 0.7236   |
| 0.8123        | 0.1307 | 40   | 0.3799          | 0.8101    | 0.7616 | 0.7851 | 0.9053   |
| 0.4216        | 0.1961 | 60   | 0.2338          | 0.8720    | 0.8610 | 0.8665 | 0.9379   |
| 0.2799        | 0.2614 | 80   | 0.2287          | 0.8044    | 0.9026 | 0.8507 | 0.9318   |
| 0.233         | 0.3268 | 100  | 0.1659          | 0.8651    | 0.9243 | 0.8937 | 0.9526   |
| 0.2401        | 0.3922 | 120  | 0.1523          | 0.8654    | 0.9393 | 0.9009 | 0.9566   |
| 0.1876        | 0.4575 | 140  | 0.1301          | 0.9080    | 0.9384 | 0.9230 | 0.9612   |
| 0.1605        | 0.5229 | 160  | 0.1346          | 0.8872    | 0.9450 | 0.9152 | 0.9627   |
| 0.162         | 0.5882 | 180  | 0.1420          | 0.8839    | 0.9584 | 0.9197 | 0.9602   |
| 0.1422        | 0.6536 | 200  | 0.1108          | 0.9086    | 0.9521 | 0.9298 | 0.9679   |
| 0.1351        | 0.7190 | 220  | 0.1054          | 0.9222    | 0.9376 | 0.9298 | 0.9681   |
| 0.141         | 0.7843 | 240  | 0.1079          | 0.9177    | 0.9615 | 0.9391 | 0.9704   |
| 0.125         | 0.8497 | 260  | 0.1069          | 0.9229    | 0.9579 | 0.9401 | 0.9711   |
| 0.1344        | 0.9150 | 280  | 0.1069          | 0.9193    | 0.9558 | 0.9372 | 0.9709   |
| 0.1382        | 0.9804 | 300  | 0.0991          | 0.9320    | 0.9515 | 0.9416 | 0.9733   |
| 0.1139        | 1.0458 | 320  | 0.0962          | 0.9274    | 0.9604 | 0.9436 | 0.9733   |
| 0.0995        | 1.1111 | 340  | 0.0997          | 0.9339    | 0.9580 | 0.9458 | 0.9719   |
| 0.1086        | 1.1765 | 360  | 0.1040          | 0.9301    | 0.9584 | 0.9440 | 0.9715   |
| 0.1065        | 1.2418 | 380  | 0.0938          | 0.9407    | 0.9620 | 0.9512 | 0.9763   |
| 0.1231        | 1.3072 | 400  | 0.0893          | 0.9365    | 0.9609 | 0.9486 | 0.9754   |
| 0.1006        | 1.3725 | 420  | 0.1003          | 0.9170    | 0.9536 | 0.9349 | 0.9704   |
| 0.1056        | 1.4379 | 440  | 0.0837          | 0.9474    | 0.9580 | 0.9527 | 0.9776   |
| 0.0924        | 1.5033 | 460  | 0.0824          | 0.9411    | 0.9643 | 0.9526 | 0.9770   |
| 0.097         | 1.5686 | 480  | 0.0887          | 0.9335    | 0.9711 | 0.9519 | 0.9759   |
| 0.0928        | 1.6340 | 500  | 0.0886          | 0.9358    | 0.9669 | 0.9511 | 0.9760   |
| 0.0803        | 1.6993 | 520  | 0.0947          | 0.9220    | 0.9704 | 0.9456 | 0.9726   |
| 0.0908        | 1.7647 | 540  | 0.0833          | 0.9401    | 0.9616 | 0.9507 | 0.9777   |
| 0.0956        | 1.8301 | 560  | 0.1060          | 0.9161    | 0.9749 | 0.9446 | 0.9721   |
| 0.1087        | 1.8954 | 580  | 0.0904          | 0.9378    | 0.9620 | 0.9497 | 0.9748   |
| 0.0979        | 1.9608 | 600  | 0.0940          | 0.9293    | 0.9627 | 0.9457 | 0.9739   |
| 0.0828        | 2.0261 | 620  | 0.0874          | 0.9401    | 0.9621 | 0.9509 | 0.9760   |
| 0.0759        | 2.0915 | 640  | 0.0822          | 0.9401    | 0.9707 | 0.9552 | 0.9787   |
| 0.0597        | 2.1569 | 660  | 0.0838          | 0.9468    | 0.9605 | 0.9536 | 0.9780   |
| 0.0804        | 2.2222 | 680  | 0.0800          | 0.9447    | 0.9680 | 0.9562 | 0.9788   |
| 0.0821        | 2.2876 | 700  | 0.0883          | 0.9315    | 0.9669 | 0.9489 | 0.9759   |
| 0.0634        | 2.3529 | 720  | 0.0771          | 0.9494    | 0.9710 | 0.9601 | 0.9805   |
| 0.0723        | 2.4183 | 740  | 0.0753          | 0.9443    | 0.9705 | 0.9573 | 0.9799   |
| 0.093         | 2.4837 | 760  | 0.0762          | 0.9481    | 0.9705 | 0.9591 | 0.9805   |
| 0.0715        | 2.5490 | 780  | 0.0804          | 0.9487    | 0.9691 | 0.9588 | 0.9806   |
| 0.0688        | 2.6144 | 800  | 0.0783          | 0.9479    | 0.9697 | 0.9586 | 0.9803   |
| 0.0563        | 2.6797 | 820  | 0.0874          | 0.9469    | 0.9683 | 0.9575 | 0.9786   |
| 0.071         | 2.7451 | 840  | 0.0830          | 0.9363    | 0.9667 | 0.9513 | 0.9771   |
| 0.0681        | 2.8105 | 860  | 0.0833          | 0.9430    | 0.9736 | 0.9581 | 0.9791   |
| 0.074         | 2.8758 | 880  | 0.0809          | 0.9430    | 0.9705 | 0.9565 | 0.9785   |
| 0.0662        | 2.9412 | 900  | 0.0928          | 0.9283    | 0.9709 | 0.9491 | 0.9752   |
| 0.0718        | 3.0065 | 920  | 0.0771          | 0.9453    | 0.9753 | 0.9601 | 0.9809   |
| 0.0497        | 3.0719 | 940  | 0.0756          | 0.9487    | 0.9703 | 0.9594 | 0.9807   |
| 0.0559        | 3.1373 | 960  | 0.0887          | 0.9435    | 0.9662 | 0.9547 | 0.9772   |
| 0.0481        | 3.2026 | 980  | 0.0828          | 0.9438    | 0.9724 | 0.9579 | 0.9794   |
| 0.0541        | 3.2680 | 1000 | 0.0886          | 0.9376    | 0.9625 | 0.9499 | 0.9771   |
| 0.0582        | 3.3333 | 1020 | 0.0810          | 0.9443    | 0.9667 | 0.9554 | 0.9787   |
| 0.0714        | 3.3987 | 1040 | 0.0942          | 0.9295    | 0.9713 | 0.9499 | 0.9764   |
| 0.0693        | 3.4641 | 1060 | 0.0986          | 0.9256    | 0.9624 | 0.9436 | 0.9727   |
| 0.0559        | 3.5294 | 1080 | 0.0822          | 0.9457    | 0.9674 | 0.9564 | 0.9792   |
| 0.054         | 3.5948 | 1100 | 0.0879          | 0.9444    | 0.9650 | 0.9546 | 0.9766   |
| 0.0559        | 3.6601 | 1120 | 0.0821          | 0.9444    | 0.9705 | 0.9573 | 0.9794   |
| 0.0592        | 3.7255 | 1140 | 0.0800          | 0.9514    | 0.9694 | 0.9603 | 0.9803   |
| 0.0637        | 3.7908 | 1160 | 0.0797          | 0.9508    | 0.9665 | 0.9586 | 0.9804   |
| 0.0716        | 3.8562 | 1180 | 0.0799          | 0.9452    | 0.9700 | 0.9574 | 0.9792   |
| 0.0659        | 3.9216 | 1200 | 0.0821          | 0.9483    | 0.9692 | 0.9586 | 0.9802   |
| 0.0721        | 3.9869 | 1220 | 0.0770          | 0.9470    | 0.9704 | 0.9585 | 0.9800   |
| 0.0502        | 4.0523 | 1240 | 0.0797          | 0.9469    | 0.9719 | 0.9592 | 0.9803   |
| 0.0404        | 4.1176 | 1260 | 0.0855          | 0.9367    | 0.9704 | 0.9533 | 0.9776   |
| 0.0455        | 4.1830 | 1280 | 0.0805          | 0.9469    | 0.9669 | 0.9568 | 0.9790   |
| 0.0463        | 4.2484 | 1300 | 0.0774          | 0.9505    | 0.9701 | 0.9602 | 0.9808   |
| 0.0446        | 4.3137 | 1320 | 0.0753          | 0.9509    | 0.9645 | 0.9577 | 0.9806   |
| 0.0444        | 4.3791 | 1340 | 0.0799          | 0.9431    | 0.9709 | 0.9568 | 0.9793   |
| 0.0403        | 4.4444 | 1360 | 0.0792          | 0.9463    | 0.9689 | 0.9575 | 0.9801   |
| 0.0355        | 4.5098 | 1380 | 0.0804          | 0.9445    | 0.9693 | 0.9567 | 0.9797   |
| 0.0549        | 4.5752 | 1400 | 0.0795          | 0.9469    | 0.9666 | 0.9566 | 0.9797   |
| 0.0437        | 4.6405 | 1420 | 0.0780          | 0.9462    | 0.9722 | 0.9590 | 0.9803   |
| 0.0411        | 4.7059 | 1440 | 0.0849          | 0.9451    | 0.9706 | 0.9577 | 0.9796   |
| 0.05          | 4.7712 | 1460 | 0.0849          | 0.9425    | 0.9710 | 0.9565 | 0.9789   |
| 0.0436        | 4.8366 | 1480 | 0.0819          | 0.9492    | 0.9712 | 0.9601 | 0.9801   |
| 0.0454        | 4.9020 | 1500 | 0.0820          | 0.9432    | 0.9735 | 0.9581 | 0.9798   |
| 0.052         | 4.9673 | 1520 | 0.0804          | 0.9457    | 0.9708 | 0.9581 | 0.9803   |
| 0.0397        | 5.0327 | 1540 | 0.0828          | 0.9457    | 0.9717 | 0.9585 | 0.9801   |
| 0.0372        | 5.0980 | 1560 | 0.0782          | 0.9508    | 0.9731 | 0.9618 | 0.9816   |
| 0.0412        | 5.1634 | 1580 | 0.0796          | 0.9486    | 0.9739 | 0.9611 | 0.9807   |
| 0.0353        | 5.2288 | 1600 | 0.0840          | 0.9405    | 0.9730 | 0.9565 | 0.9789   |
| 0.0304        | 5.2941 | 1620 | 0.0778          | 0.9500    | 0.9704 | 0.9601 | 0.9805   |
| 0.0365        | 5.3595 | 1640 | 0.0819          | 0.9462    | 0.9708 | 0.9583 | 0.9796   |
| 0.0319        | 5.4248 | 1660 | 0.0770          | 0.9531    | 0.9694 | 0.9612 | 0.9817   |
| 0.0424        | 5.4902 | 1680 | 0.0827          | 0.9449    | 0.9671 | 0.9559 | 0.9801   |
| 0.0378        | 5.5556 | 1700 | 0.0772          | 0.9548    | 0.9705 | 0.9626 | 0.9820   |
| 0.0379        | 5.6209 | 1720 | 0.0842          | 0.9460    | 0.9700 | 0.9578 | 0.9796   |
| 0.0369        | 5.6863 | 1740 | 0.0779          | 0.9551    | 0.9694 | 0.9622 | 0.9820   |
| 0.0355        | 5.7516 | 1760 | 0.0825          | 0.9429    | 0.9701 | 0.9563 | 0.9799   |
| 0.0308        | 5.8170 | 1780 | 0.0790          | 0.9500    | 0.9732 | 0.9615 | 0.9816   |
| 0.0399        | 5.8824 | 1800 | 0.0808          | 0.9476    | 0.9696 | 0.9585 | 0.9805   |
| 0.0326        | 5.9477 | 1820 | 0.0777          | 0.9510    | 0.9709 | 0.9608 | 0.9813   |
| 0.0407        | 6.0131 | 1840 | 0.0800          | 0.9494    | 0.9703 | 0.9597 | 0.9811   |
| 0.0319        | 6.0784 | 1860 | 0.0810          | 0.9499    | 0.9705 | 0.9601 | 0.9812   |
| 0.0278        | 6.1438 | 1880 | 0.0822          | 0.9464    | 0.9703 | 0.9582 | 0.9805   |
| 0.0227        | 6.2092 | 1900 | 0.0852          | 0.9437    | 0.9684 | 0.9559 | 0.9797   |
| 0.0331        | 6.2745 | 1920 | 0.0813          | 0.9480    | 0.9708 | 0.9593 | 0.9810   |
| 0.0306        | 6.3399 | 1940 | 0.0823          | 0.9475    | 0.9707 | 0.9590 | 0.9809   |
| 0.0287        | 6.4052 | 1960 | 0.0814          | 0.9493    | 0.9704 | 0.9597 | 0.9812   |
| 0.0272        | 6.4706 | 1980 | 0.0826          | 0.9469    | 0.9691 | 0.9579 | 0.9808   |
| 0.0294        | 6.5359 | 2000 | 0.0821          | 0.9482    | 0.9710 | 0.9594 | 0.9813   |
| 0.0335        | 6.6013 | 2020 | 0.0814          | 0.9499    | 0.9710 | 0.9603 | 0.9816   |
| 0.0271        | 6.6667 | 2040 | 0.0809          | 0.9507    | 0.9695 | 0.9600 | 0.9817   |
| 0.0308        | 6.7320 | 2060 | 0.0807          | 0.9513    | 0.9705 | 0.9608 | 0.9820   |
| 0.0332        | 6.7974 | 2080 | 0.0798          | 0.9522    | 0.9708 | 0.9614 | 0.9822   |
| 0.0257        | 6.8627 | 2100 | 0.0802          | 0.9517    | 0.9714 | 0.9615 | 0.9821   |
| 0.0292        | 6.9281 | 2120 | 0.0806          | 0.9518    | 0.9720 | 0.9618 | 0.9821   |


### Framework versions

- PEFT 0.13.2
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0