Ju214 commited on
Commit
57de4fa
·
1 Parent(s): 131ad48

add models

Browse files
Mistral-Small-24B-3.1/.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
Mistral-Small-24B-3.1/README.md ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - de
6
+ - es
7
+ - pt
8
+ - it
9
+ - ja
10
+ - ko
11
+ - ru
12
+ - zh
13
+ - ar
14
+ - fa
15
+ - id
16
+ - ms
17
+ - ne
18
+ - pl
19
+ - ro
20
+ - sr
21
+ - sv
22
+ - tr
23
+ - uk
24
+ - vi
25
+ - hi
26
+ - bn
27
+ license: apache-2.0
28
+ library_name: vllm
29
+ base_model:
30
+ - mistralai/Mistral-Small-3.1-24B-Instruct-2503
31
+ pipeline_tag: image-text-to-text
32
+ tags:
33
+ - neuralmagic
34
+ - redhat
35
+ - llmcompressor
36
+ - quantized
37
+ - int4
38
+ ---
39
+
40
+ # Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
41
+
42
+ ## Model Overview
43
+ - **Model Architecture:** Mistral3ForConditionalGeneration
44
+ - **Input:** Text / Image
45
+ - **Output:** Text
46
+ - **Model Optimizations:**
47
+ - **Weight quantization:** INT4
48
+ - **Intended Use Cases:** It is ideal for:
49
+ - Fast-response conversational agents.
50
+ - Low-latency function calling.
51
+ - Subject matter experts via fine-tuning.
52
+ - Local inference for hobbyists and organizations handling sensitive data.
53
+ - Programming and math reasoning.
54
+ - Long document understanding.
55
+ - Visual understanding.
56
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
57
+ - **Release Date:** 04/15/2025
58
+ - **Version:** 1.0
59
+ - **Model Developers:** Red Hat (Neural Magic)
60
+
61
+
62
+ ### Model Optimizations
63
+
64
+ This model was obtained by quantizing the weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to INT4 data type.
65
+ This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
66
+
67
+ Only the weights of the linear operators within transformers blocks are quantized.
68
+ Weights are quantized using a symmetric per-group scheme, with group size 128.
69
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
70
+
71
+
72
+ ## Deployment
73
+
74
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
75
+
76
+ ```python
77
+ from vllm import LLM, SamplingParams
78
+ from transformers import AutoProcessor
79
+
80
+ model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"
81
+ number_gpus = 1
82
+
83
+ sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
84
+ processor = AutoProcessor.from_pretrained(model_id)
85
+
86
+ messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
87
+
88
+ prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
89
+
90
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
91
+
92
+ outputs = llm.generate(prompts, sampling_params)
93
+
94
+ generated_text = outputs[0].outputs[0].text
95
+ print(generated_text)
96
+ ```
97
+
98
+
99
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
100
+
101
+ ## Creation
102
+
103
+ <details>
104
+ <summary>Creation details</summary>
105
+ This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
106
+
107
+
108
+ ```python
109
+ from transformers import AutoProcessor
110
+ from llmcompressor.modifiers.quantization import GPTQModifier
111
+ from llmcompressor.transformers import oneshot
112
+ from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration
113
+ from datasets import load_dataset, interleave_datasets
114
+ from PIL import Image
115
+ import io
116
+
117
+ # Load model
118
+ model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
119
+ model_name = model_stub.split("/")[-1]
120
+
121
+ num_text_samples = 1024
122
+ num_vision_samples = 1024
123
+ max_seq_len = 8192
124
+
125
+ processor = AutoProcessor.from_pretrained(model_stub)
126
+
127
+ model = TraceableMistral3ForConditionalGeneration.from_pretrained(
128
+ model_stub,
129
+ device_map="auto",
130
+ torch_dtype="auto",
131
+ )
132
+
133
+ # Text-only data subset
134
+ def preprocess_text(example):
135
+ input = {
136
+ "text": processor.apply_chat_template(
137
+ example["messages"],
138
+ add_generation_prompt=False,
139
+ ),
140
+ "images": None,
141
+ }
142
+ tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
143
+ tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
144
+ tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
145
+ return tokenized_input
146
+
147
+ dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples))
148
+ dst = dst.map(preprocess_text, remove_columns=dst.column_names)
149
+
150
+ # Text + vision data subset
151
+ def preprocess_vision(example):
152
+ messages = []
153
+ image = None
154
+ for message in example["messages"]:
155
+ message_content = []
156
+ for content in message["content"]:
157
+ if content["type"] == "text":
158
+ message_content.append({"type": "text", "text": content["text"]})
159
+ else:
160
+ message_content.append({"type": "image"})
161
+ image = Image.open(io.BytesIO(content["image"]))
162
+
163
+ messages.append(
164
+ {
165
+ "role": message["role"],
166
+ "content": message_content,
167
+ }
168
+ )
169
+
170
+ input = {
171
+ "text": processor.apply_chat_template(
172
+ messages,
173
+ add_generation_prompt=False,
174
+ ),
175
+ "images": image,
176
+ }
177
+ tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
178
+ tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
179
+ tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
180
+ return tokenized_input
181
+
182
+ dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples))
183
+ dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names)
184
+
185
+ # Interleave subsets
186
+ ds = interleave_datasets((dsv, dst))
187
+
188
+ # Configure the quantization algorithm and scheme
189
+ recipe = GPTQModifier(
190
+ ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
191
+ sequential_targets=["MistralDecoderLayer"],
192
+ dampening_frac=0.01,
193
+ targets="Linear",
194
+ scheme="W4A16",
195
+ )
196
+
197
+ # Define data collator
198
+ def data_collator(batch):
199
+ import torch
200
+ assert len(batch) == 1
201
+ collated = {}
202
+ for k, v in batch[0].items():
203
+ if v is None:
204
+ continue
205
+ if k == "input_ids":
206
+ collated[k] = torch.LongTensor(v)
207
+ elif k == "pixel_values":
208
+ collated[k] = torch.tensor(v, dtype=torch.bfloat16)
209
+ else:
210
+ collated[k] = torch.tensor(v)
211
+ return collated
212
+
213
+
214
+ # Apply quantization
215
+ oneshot(
216
+ model=model,
217
+ dataset=ds,
218
+ recipe=recipe,
219
+ max_seq_length=max_seq_len,
220
+ data_collator=data_collator,
221
+ num_calibration_samples=num_text_samples + num_vision_samples,
222
+ )
223
+
224
+ # Save to disk in compressed-tensors format
225
+ save_path = model_name + "-quantized.w4a16"
226
+ model.save_pretrained(save_path)
227
+ processor.save_pretrained(save_path)
228
+ print(f"Model and tokenizer saved to: {save_path}")
229
+ ```
230
+ </details>
231
+
232
+
233
+
234
+ ## Evaluation
235
+
236
+ The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP.
237
+ Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus).
238
+ [vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases.
239
+
240
+ <details>
241
+ <summary>Evaluation details</summary>
242
+
243
+ **MMLU**
244
+ ```
245
+ lm_eval \
246
+ --model vllm \
247
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
248
+ --tasks mmlu \
249
+ --num_fewshot 5 \
250
+ --apply_chat_template\
251
+ --fewshot_as_multiturn \
252
+ --batch_size auto
253
+ ```
254
+
255
+ **ARC Challenge**
256
+ ```
257
+ lm_eval \
258
+ --model vllm \
259
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
260
+ --tasks arc_challenge \
261
+ --num_fewshot 25 \
262
+ --apply_chat_template\
263
+ --fewshot_as_multiturn \
264
+ --batch_size auto
265
+ ```
266
+
267
+ **GSM8k**
268
+ ```
269
+ lm_eval \
270
+ --model vllm \
271
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
272
+ --tasks gsm8k \
273
+ --num_fewshot 8 \
274
+ --apply_chat_template\
275
+ --fewshot_as_multiturn \
276
+ --batch_size auto
277
+ ```
278
+
279
+ **Hellaswag**
280
+ ```
281
+ lm_eval \
282
+ --model vllm \
283
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
284
+ --tasks hellaswag \
285
+ --num_fewshot 10 \
286
+ --apply_chat_template\
287
+ --fewshot_as_multiturn \
288
+ --batch_size auto
289
+ ```
290
+
291
+ **Winogrande**
292
+ ```
293
+ lm_eval \
294
+ --model vllm \
295
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
296
+ --tasks winogrande \
297
+ --num_fewshot 5 \
298
+ --apply_chat_template\
299
+ --fewshot_as_multiturn \
300
+ --batch_size auto
301
+ ```
302
+
303
+ **TruthfulQA**
304
+ ```
305
+ lm_eval \
306
+ --model vllm \
307
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
308
+ --tasks truthfulqa \
309
+ --num_fewshot 0 \
310
+ --apply_chat_template\
311
+ --batch_size auto
312
+ ```
313
+
314
+ **MMLU-pro**
315
+ ```
316
+ lm_eval \
317
+ --model vllm \
318
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
319
+ --tasks mmlu_pro \
320
+ --num_fewshot 5 \
321
+ --apply_chat_template\
322
+ --fewshot_as_multiturn \
323
+ --batch_size auto
324
+ ```
325
+
326
+ **MMMU**
327
+ ```
328
+ lm_eval \
329
+ --model vllm \
330
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
331
+ --tasks mmmu_val \
332
+ --apply_chat_template\
333
+ --batch_size auto
334
+ ```
335
+
336
+ **ChartQA**
337
+ ```
338
+ lm_eval \
339
+ --model vllm \
340
+ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
341
+ --tasks chartqa \
342
+ --apply_chat_template\
343
+ --batch_size auto
344
+ ```
345
+
346
+ **Coding**
347
+
348
+ The commands below can be used for mbpp by simply replacing the dataset name.
349
+
350
+ *Generation*
351
+ ```
352
+ python3 codegen/generate.py \
353
+ --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 \
354
+ --bs 16 \
355
+ --temperature 0.2 \
356
+ --n_samples 50 \
357
+ --root "." \
358
+ --dataset humaneval
359
+
360
+ ```
361
+
362
+ *Sanitization*
363
+ ```
364
+ python3 evalplus/sanitize.py \
365
+ humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2
366
+ ```
367
+
368
+ *Evaluation*
369
+ ```
370
+ evalplus.evaluate \
371
+ --dataset humaneval \
372
+ --samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2-sanitized
373
+ ```
374
+ </details>
375
+
376
+ ### Accuracy
377
+
378
+ <table>
379
+ <tr>
380
+ <th>Category
381
+ </th>
382
+ <th>Benchmark
383
+ </th>
384
+ <th>Mistral-Small-3.1-24B-Instruct-2503
385
+ </th>
386
+ <th>Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16<br>(this model)
387
+ </th>
388
+ <th>Recovery
389
+ </th>
390
+ </tr>
391
+ <tr>
392
+ <td rowspan="7" ><strong>OpenLLM v1</strong>
393
+ </td>
394
+ <td>MMLU (5-shot)
395
+ </td>
396
+ <td>80.67
397
+ </td>
398
+ <td>79.74
399
+ </td>
400
+ <td>98.9%
401
+ </td>
402
+ </tr>
403
+ <tr>
404
+ <td>ARC Challenge (25-shot)
405
+ </td>
406
+ <td>72.78
407
+ </td>
408
+ <td>72.18
409
+ </td>
410
+ <td>99.2%
411
+ </td>
412
+ </tr>
413
+ <tr>
414
+ <td>GSM-8K (5-shot, strict-match)
415
+ </td>
416
+ <td>58.68
417
+ </td>
418
+ <td>59.59
419
+ </td>
420
+ <td>101.6%
421
+ </td>
422
+ </tr>
423
+ <tr>
424
+ <td>Hellaswag (10-shot)
425
+ </td>
426
+ <td>83.70
427
+ </td>
428
+ <td>83.25
429
+ </td>
430
+ <td>99.5%
431
+ </td>
432
+ </tr>
433
+ <tr>
434
+ <td>Winogrande (5-shot)
435
+ </td>
436
+ <td>83.74
437
+ </td>
438
+ <td>83.43
439
+ </td>
440
+ <td>99.6%
441
+ </td>
442
+ </tr>
443
+ <tr>
444
+ <td>TruthfulQA (0-shot, mc2)
445
+ </td>
446
+ <td>70.62
447
+ </td>
448
+ <td>69.56
449
+ </td>
450
+ <td>98.5%
451
+ </td>
452
+ </tr>
453
+ <tr>
454
+ <td><strong>Average</strong>
455
+ </td>
456
+ <td><strong>75.03</strong>
457
+ </td>
458
+ <td><strong>74.63</strong>
459
+ </td>
460
+ <td><strong>99.5%</strong>
461
+ </td>
462
+ </tr>
463
+ <tr>
464
+ <td rowspan="3" ><strong></strong>
465
+ </td>
466
+ <td>MMLU-Pro (5-shot)
467
+ </td>
468
+ <td>67.25
469
+ </td>
470
+ <td>66.56
471
+ </td>
472
+ <td>99.0%
473
+ </td>
474
+ </tr>
475
+ <tr>
476
+ <td>GPQA CoT main (5-shot)
477
+ </td>
478
+ <td>42.63
479
+ </td>
480
+ <td>47.10
481
+ </td>
482
+ <td>110.5%
483
+ </td>
484
+ </tr>
485
+ <tr>
486
+ <td>GPQA CoT diamond (5-shot)
487
+ </td>
488
+ <td>45.96
489
+ </td>
490
+ <td>44.95
491
+ </td>
492
+ <td>97.80%
493
+ </td>
494
+ </tr>
495
+ <tr>
496
+ <td rowspan="4" ><strong>Coding</strong>
497
+ </td>
498
+ <td>HumanEval pass@1
499
+ </td>
500
+ <td>84.70
501
+ </td>
502
+ <td>84.60
503
+ </td>
504
+ <td>99.9%
505
+ </td>
506
+ </tr>
507
+ <tr>
508
+ <td>HumanEval+ pass@1
509
+ </td>
510
+ <td>79.50
511
+ </td>
512
+ <td>79.90
513
+ </td>
514
+ <td>100.5%
515
+ </td>
516
+ </tr>
517
+ <tr>
518
+ <td>MBPP pass@1
519
+ </td>
520
+ <td>71.10
521
+ </td>
522
+ <td>70.10
523
+ </td>
524
+ <td>98.6%
525
+ </td>
526
+ </tr>
527
+ <tr>
528
+ <td>MBPP+ pass@1
529
+ </td>
530
+ <td>60.60
531
+ </td>
532
+ <td>60.70
533
+ </td>
534
+ <td>100.2%
535
+ </td>
536
+ </tr>
537
+ <tr>
538
+ <td rowspan="2" ><strong>Vision</strong>
539
+ </td>
540
+ <td>MMMU (0-shot)
541
+ </td>
542
+ <td>52.11
543
+ </td>
544
+ <td>50.11
545
+ </td>
546
+ <td>96.2%
547
+ </td>
548
+ </tr>
549
+ <tr>
550
+ <td>ChartQA (0-shot)
551
+ </td>
552
+ <td>81.36
553
+ </td>
554
+ <td>80.92
555
+ </td>
556
+ <td>99.5%
557
+ </td>
558
+ </tr>
559
+ <tr>
560
+ </table>
561
+
Mistral-Small-24B-3.1/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content'] %}\n {%- else %}\n {%- set system_message = messages[0]['content'][0]['text'] %}\n {%- endif %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {%- if message['content'] is string %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- else %}\n {{- '[INST]' }}\n {%- for block in message['content'] %}\n {%- if block['type'] == 'text' %}\n {{- block['text'] }}\n {%- elif block['type'] in ['image', 'image_url'] %}\n {{- '[IMG]' }}\n {%- else %}\n {{- raise_exception('Only text and image blocks are supported in message content!') }}\n {%- endif %}\n {%- endfor %}\n {{- '[/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'system' %}\n {%- if message['content'] is string %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- else %}\n {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {%- if message['content'] is string %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- message['content'][0]['text'] + eos_token }}\n {%- endif %}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}"
3
+ }
Mistral-Small-24B-3.1/config.json ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Mistral3ForConditionalGeneration"
4
+ ],
5
+ "image_token_index": 10,
6
+ "model_type": "mistral3",
7
+ "multimodal_projector_bias": false,
8
+ "projector_hidden_act": "gelu",
9
+ "quantization_config": {
10
+ "config_groups": {
11
+ "group_0": {
12
+ "input_activations": null,
13
+ "output_activations": null,
14
+ "targets": [
15
+ "Linear"
16
+ ],
17
+ "weights": {
18
+ "actorder": "weight",
19
+ "block_structure": null,
20
+ "dynamic": false,
21
+ "group_size": 128,
22
+ "num_bits": 4,
23
+ "observer": "minmax",
24
+ "observer_kwargs": {},
25
+ "strategy": "group",
26
+ "symmetric": true,
27
+ "type": "int"
28
+ }
29
+ }
30
+ },
31
+ "format": "pack-quantized",
32
+ "global_compression_ratio": 1.4742778120818896,
33
+ "ignore": [
34
+ "vision_tower.transformer.layers.0.feed_forward.gate_proj",
35
+ "vision_tower.transformer.layers.0.feed_forward.up_proj",
36
+ "vision_tower.transformer.layers.0.feed_forward.down_proj",
37
+ "vision_tower.transformer.layers.0.attention.k_proj",
38
+ "vision_tower.transformer.layers.0.attention.v_proj",
39
+ "vision_tower.transformer.layers.0.attention.q_proj",
40
+ "vision_tower.transformer.layers.0.attention.o_proj",
41
+ "vision_tower.transformer.layers.1.feed_forward.gate_proj",
42
+ "vision_tower.transformer.layers.1.feed_forward.up_proj",
43
+ "vision_tower.transformer.layers.1.feed_forward.down_proj",
44
+ "vision_tower.transformer.layers.1.attention.k_proj",
45
+ "vision_tower.transformer.layers.1.attention.v_proj",
46
+ "vision_tower.transformer.layers.1.attention.q_proj",
47
+ "vision_tower.transformer.layers.1.attention.o_proj",
48
+ "vision_tower.transformer.layers.2.feed_forward.gate_proj",
49
+ "vision_tower.transformer.layers.2.feed_forward.up_proj",
50
+ "vision_tower.transformer.layers.2.feed_forward.down_proj",
51
+ "vision_tower.transformer.layers.2.attention.k_proj",
52
+ "vision_tower.transformer.layers.2.attention.v_proj",
53
+ "vision_tower.transformer.layers.2.attention.q_proj",
54
+ "vision_tower.transformer.layers.2.attention.o_proj",
55
+ "vision_tower.transformer.layers.3.feed_forward.gate_proj",
56
+ "vision_tower.transformer.layers.3.feed_forward.up_proj",
57
+ "vision_tower.transformer.layers.3.feed_forward.down_proj",
58
+ "vision_tower.transformer.layers.3.attention.k_proj",
59
+ "vision_tower.transformer.layers.3.attention.v_proj",
60
+ "vision_tower.transformer.layers.3.attention.q_proj",
61
+ "vision_tower.transformer.layers.3.attention.o_proj",
62
+ "vision_tower.transformer.layers.4.feed_forward.gate_proj",
63
+ "vision_tower.transformer.layers.4.feed_forward.up_proj",
64
+ "vision_tower.transformer.layers.4.feed_forward.down_proj",
65
+ "vision_tower.transformer.layers.4.attention.k_proj",
66
+ "vision_tower.transformer.layers.4.attention.v_proj",
67
+ "vision_tower.transformer.layers.4.attention.q_proj",
68
+ "vision_tower.transformer.layers.4.attention.o_proj",
69
+ "vision_tower.transformer.layers.5.feed_forward.gate_proj",
70
+ "vision_tower.transformer.layers.5.feed_forward.up_proj",
71
+ "vision_tower.transformer.layers.5.feed_forward.down_proj",
72
+ "vision_tower.transformer.layers.5.attention.k_proj",
73
+ "vision_tower.transformer.layers.5.attention.v_proj",
74
+ "vision_tower.transformer.layers.5.attention.q_proj",
75
+ "vision_tower.transformer.layers.5.attention.o_proj",
76
+ "vision_tower.transformer.layers.6.feed_forward.gate_proj",
77
+ "vision_tower.transformer.layers.6.feed_forward.up_proj",
78
+ "vision_tower.transformer.layers.6.feed_forward.down_proj",
79
+ "vision_tower.transformer.layers.6.attention.k_proj",
80
+ "vision_tower.transformer.layers.6.attention.v_proj",
81
+ "vision_tower.transformer.layers.6.attention.q_proj",
82
+ "vision_tower.transformer.layers.6.attention.o_proj",
83
+ "vision_tower.transformer.layers.7.feed_forward.gate_proj",
84
+ "vision_tower.transformer.layers.7.feed_forward.up_proj",
85
+ "vision_tower.transformer.layers.7.feed_forward.down_proj",
86
+ "vision_tower.transformer.layers.7.attention.k_proj",
87
+ "vision_tower.transformer.layers.7.attention.v_proj",
88
+ "vision_tower.transformer.layers.7.attention.q_proj",
89
+ "vision_tower.transformer.layers.7.attention.o_proj",
90
+ "vision_tower.transformer.layers.8.feed_forward.gate_proj",
91
+ "vision_tower.transformer.layers.8.feed_forward.up_proj",
92
+ "vision_tower.transformer.layers.8.feed_forward.down_proj",
93
+ "vision_tower.transformer.layers.8.attention.k_proj",
94
+ "vision_tower.transformer.layers.8.attention.v_proj",
95
+ "vision_tower.transformer.layers.8.attention.q_proj",
96
+ "vision_tower.transformer.layers.8.attention.o_proj",
97
+ "vision_tower.transformer.layers.9.feed_forward.gate_proj",
98
+ "vision_tower.transformer.layers.9.feed_forward.up_proj",
99
+ "vision_tower.transformer.layers.9.feed_forward.down_proj",
100
+ "vision_tower.transformer.layers.9.attention.k_proj",
101
+ "vision_tower.transformer.layers.9.attention.v_proj",
102
+ "vision_tower.transformer.layers.9.attention.q_proj",
103
+ "vision_tower.transformer.layers.9.attention.o_proj",
104
+ "vision_tower.transformer.layers.10.feed_forward.gate_proj",
105
+ "vision_tower.transformer.layers.10.feed_forward.up_proj",
106
+ "vision_tower.transformer.layers.10.feed_forward.down_proj",
107
+ "vision_tower.transformer.layers.10.attention.k_proj",
108
+ "vision_tower.transformer.layers.10.attention.v_proj",
109
+ "vision_tower.transformer.layers.10.attention.q_proj",
110
+ "vision_tower.transformer.layers.10.attention.o_proj",
111
+ "vision_tower.transformer.layers.11.feed_forward.gate_proj",
112
+ "vision_tower.transformer.layers.11.feed_forward.up_proj",
113
+ "vision_tower.transformer.layers.11.feed_forward.down_proj",
114
+ "vision_tower.transformer.layers.11.attention.k_proj",
115
+ "vision_tower.transformer.layers.11.attention.v_proj",
116
+ "vision_tower.transformer.layers.11.attention.q_proj",
117
+ "vision_tower.transformer.layers.11.attention.o_proj",
118
+ "vision_tower.transformer.layers.12.feed_forward.gate_proj",
119
+ "vision_tower.transformer.layers.12.feed_forward.up_proj",
120
+ "vision_tower.transformer.layers.12.feed_forward.down_proj",
121
+ "vision_tower.transformer.layers.12.attention.k_proj",
122
+ "vision_tower.transformer.layers.12.attention.v_proj",
123
+ "vision_tower.transformer.layers.12.attention.q_proj",
124
+ "vision_tower.transformer.layers.12.attention.o_proj",
125
+ "vision_tower.transformer.layers.13.feed_forward.gate_proj",
126
+ "vision_tower.transformer.layers.13.feed_forward.up_proj",
127
+ "vision_tower.transformer.layers.13.feed_forward.down_proj",
128
+ "vision_tower.transformer.layers.13.attention.k_proj",
129
+ "vision_tower.transformer.layers.13.attention.v_proj",
130
+ "vision_tower.transformer.layers.13.attention.q_proj",
131
+ "vision_tower.transformer.layers.13.attention.o_proj",
132
+ "vision_tower.transformer.layers.14.feed_forward.gate_proj",
133
+ "vision_tower.transformer.layers.14.feed_forward.up_proj",
134
+ "vision_tower.transformer.layers.14.feed_forward.down_proj",
135
+ "vision_tower.transformer.layers.14.attention.k_proj",
136
+ "vision_tower.transformer.layers.14.attention.v_proj",
137
+ "vision_tower.transformer.layers.14.attention.q_proj",
138
+ "vision_tower.transformer.layers.14.attention.o_proj",
139
+ "vision_tower.transformer.layers.15.feed_forward.gate_proj",
140
+ "vision_tower.transformer.layers.15.feed_forward.up_proj",
141
+ "vision_tower.transformer.layers.15.feed_forward.down_proj",
142
+ "vision_tower.transformer.layers.15.attention.k_proj",
143
+ "vision_tower.transformer.layers.15.attention.v_proj",
144
+ "vision_tower.transformer.layers.15.attention.q_proj",
145
+ "vision_tower.transformer.layers.15.attention.o_proj",
146
+ "vision_tower.transformer.layers.16.feed_forward.gate_proj",
147
+ "vision_tower.transformer.layers.16.feed_forward.up_proj",
148
+ "vision_tower.transformer.layers.16.feed_forward.down_proj",
149
+ "vision_tower.transformer.layers.16.attention.k_proj",
150
+ "vision_tower.transformer.layers.16.attention.v_proj",
151
+ "vision_tower.transformer.layers.16.attention.q_proj",
152
+ "vision_tower.transformer.layers.16.attention.o_proj",
153
+ "vision_tower.transformer.layers.17.feed_forward.gate_proj",
154
+ "vision_tower.transformer.layers.17.feed_forward.up_proj",
155
+ "vision_tower.transformer.layers.17.feed_forward.down_proj",
156
+ "vision_tower.transformer.layers.17.attention.k_proj",
157
+ "vision_tower.transformer.layers.17.attention.v_proj",
158
+ "vision_tower.transformer.layers.17.attention.q_proj",
159
+ "vision_tower.transformer.layers.17.attention.o_proj",
160
+ "vision_tower.transformer.layers.18.feed_forward.gate_proj",
161
+ "vision_tower.transformer.layers.18.feed_forward.up_proj",
162
+ "vision_tower.transformer.layers.18.feed_forward.down_proj",
163
+ "vision_tower.transformer.layers.18.attention.k_proj",
164
+ "vision_tower.transformer.layers.18.attention.v_proj",
165
+ "vision_tower.transformer.layers.18.attention.q_proj",
166
+ "vision_tower.transformer.layers.18.attention.o_proj",
167
+ "vision_tower.transformer.layers.19.feed_forward.gate_proj",
168
+ "vision_tower.transformer.layers.19.feed_forward.up_proj",
169
+ "vision_tower.transformer.layers.19.feed_forward.down_proj",
170
+ "vision_tower.transformer.layers.19.attention.k_proj",
171
+ "vision_tower.transformer.layers.19.attention.v_proj",
172
+ "vision_tower.transformer.layers.19.attention.q_proj",
173
+ "vision_tower.transformer.layers.19.attention.o_proj",
174
+ "vision_tower.transformer.layers.20.feed_forward.gate_proj",
175
+ "vision_tower.transformer.layers.20.feed_forward.up_proj",
176
+ "vision_tower.transformer.layers.20.feed_forward.down_proj",
177
+ "vision_tower.transformer.layers.20.attention.k_proj",
178
+ "vision_tower.transformer.layers.20.attention.v_proj",
179
+ "vision_tower.transformer.layers.20.attention.q_proj",
180
+ "vision_tower.transformer.layers.20.attention.o_proj",
181
+ "vision_tower.transformer.layers.21.feed_forward.gate_proj",
182
+ "vision_tower.transformer.layers.21.feed_forward.up_proj",
183
+ "vision_tower.transformer.layers.21.feed_forward.down_proj",
184
+ "vision_tower.transformer.layers.21.attention.k_proj",
185
+ "vision_tower.transformer.layers.21.attention.v_proj",
186
+ "vision_tower.transformer.layers.21.attention.q_proj",
187
+ "vision_tower.transformer.layers.21.attention.o_proj",
188
+ "vision_tower.transformer.layers.22.feed_forward.gate_proj",
189
+ "vision_tower.transformer.layers.22.feed_forward.up_proj",
190
+ "vision_tower.transformer.layers.22.feed_forward.down_proj",
191
+ "vision_tower.transformer.layers.22.attention.k_proj",
192
+ "vision_tower.transformer.layers.22.attention.v_proj",
193
+ "vision_tower.transformer.layers.22.attention.q_proj",
194
+ "vision_tower.transformer.layers.22.attention.o_proj",
195
+ "vision_tower.transformer.layers.23.feed_forward.gate_proj",
196
+ "vision_tower.transformer.layers.23.feed_forward.up_proj",
197
+ "vision_tower.transformer.layers.23.feed_forward.down_proj",
198
+ "vision_tower.transformer.layers.23.attention.k_proj",
199
+ "vision_tower.transformer.layers.23.attention.v_proj",
200
+ "vision_tower.transformer.layers.23.attention.q_proj",
201
+ "vision_tower.transformer.layers.23.attention.o_proj",
202
+ "multi_modal_projector.patch_merger.merging_layer",
203
+ "multi_modal_projector.linear_1",
204
+ "multi_modal_projector.linear_2",
205
+ "language_model.lm_head"
206
+ ],
207
+ "kv_cache_scheme": null,
208
+ "quant_method": "compressed-tensors",
209
+ "quantization_status": "compressed"
210
+ },
211
+ "spatial_merge_size": 2,
212
+ "text_config": {
213
+ "_attn_implementation_autoset": true,
214
+ "attention_dropout": 0.0,
215
+ "head_dim": 128,
216
+ "hidden_act": "silu",
217
+ "hidden_size": 5120,
218
+ "initializer_range": 0.02,
219
+ "intermediate_size": 32768,
220
+ "max_position_embeddings": 131072,
221
+ "model_type": "mistral",
222
+ "num_attention_heads": 32,
223
+ "num_hidden_layers": 40,
224
+ "num_key_value_heads": 8,
225
+ "rms_norm_eps": 1e-05,
226
+ "rope_theta": 1000000000.0,
227
+ "sliding_window": null,
228
+ "use_cache": true,
229
+ "vocab_size": 131072
230
+ },
231
+ "torch_dtype": "bfloat16",
232
+ "transformers_version": "4.52.0.dev0",
233
+ "vision_config": {
234
+ "attention_dropout": 0.0,
235
+ "head_dim": 64,
236
+ "hidden_act": "gelu",
237
+ "hidden_size": 1024,
238
+ "image_size": 1540,
239
+ "initializer_range": 0.02,
240
+ "intermediate_size": 4096,
241
+ "model_type": "pixtral",
242
+ "num_attention_heads": 16,
243
+ "num_channels": 3,
244
+ "num_hidden_layers": 24,
245
+ "patch_size": 14,
246
+ "rope_theta": 10000.0
247
+ },
248
+ "vision_feature_layer": -1
249
+ }
Mistral-Small-24B-3.1/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.52.0.dev0"
6
+ }
Mistral-Small-24B-3.1/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0410f5c2e3361be5b2ead577ffe59869ca858a394f27c8bbdb5e225152a36065
3
+ size 4999392136
Mistral-Small-24B-3.1/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f489b95165422629849fd1207bf8b606bc20520256c9961752d9d34ca19a75e0
3
+ size 4985419312
Mistral-Small-24B-3.1/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37fafff9d17a87a9edff930708dd937b09c1d0861251160327731cbf9e721dbc
3
+ size 3698511448
Mistral-Small-24B-3.1/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0712cb93d3b9d05902f1c99d04294296cdfa37829a5f56d6e9a879b280dc346e
3
+ size 1342177424
Mistral-Small-24B-3.1/model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-Small-24B-3.1/preprocessor_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": null,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "PixtralImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "input_data_format": null,
23
+ "patch_size": {
24
+ "height": 14,
25
+ "width": 14
26
+ },
27
+ "processor_class": "PixtralProcessor",
28
+ "resample": 3,
29
+ "rescale_factor": 0.00392156862745098,
30
+ "return_tensors": null,
31
+ "size": {
32
+ "longest_edge": 1540
33
+ }
34
+ }
Mistral-Small-24B-3.1/processor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_break_token": "[IMG_BREAK]",
3
+ "image_end_token": "[IMG_END]",
4
+ "image_token": "[IMG]",
5
+ "patch_size": 14,
6
+ "processor_class": "PixtralProcessor",
7
+ "spatial_merge_size": 2
8
+ }
Mistral-Small-24B-3.1/recipe.yaml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ quant_stage:
2
+ quant_modifiers:
3
+ GPTQModifier:
4
+ ignore: [language_model.lm_head, 're:vision_tower.*', 're:multi_modal_projector.*']
5
+ sequential_targets: [MistralDecoderLayer]
6
+ dampening_frac: 0.01
7
+ config_groups:
8
+ group0:
9
+ targets: [Linear]
10
+ weights: {num_bits: 4, type: int, strategy: group, group_size: 128, symmetric: true,
11
+ actorder: weight, observer: minmax}
Mistral-Small-24B-3.1/special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
Mistral-Small-24B-3.1/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9783353ab8f26d0949ac570b4cb747d520b8b638d7fb37d525fd382b21868e
3
+ size 17078136
Mistral-Small-24B-3.1/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Phi-4-GPTQ/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
Phi-4-GPTQ/README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - microsoft/phi-4
7
+ ---
8
+ # Model Card for Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit
9
+
10
+ ## Model Overview
11
+
12
+ **Model Name**: Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit
13
+ **Model Type**: Instruction-tuned, Quantized GPT-4-based language model
14
+ **Quantization**: GPTQ 4-bit
15
+ **Author**: Satwik11
16
+ **Hosted on**: Hugging Face
17
+
18
+ ## Description
19
+
20
+ This model is a quantized version of the Microsoft phi-4 Instruct model, designed to deliver high performance while maintaining computational efficiency. By leveraging the GPTQ 4-bit quantization method, it enables deployment in environments with limited resources while retaining a high degree of accuracy.
21
+
22
+ The model is fine-tuned for instruction-following tasks, making it ideal for applications in conversational AI, question answering, and general-purpose text generation.
23
+
24
+ ## Key Features
25
+
26
+ - **Instruction-tuned**: Fine-tuned to follow human-like instructions effectively.
27
+ - **Quantized for Efficiency**: Uses GPTQ 4-bit quantization to reduce memory requirements and inference latency.
28
+ - **Pre-trained Base**: Built on the Microsoft phi-4 framework, ensuring state-of-the-art performance on NLP tasks.
29
+
30
+ ## Use Cases
31
+
32
+ - Chatbots and virtual assistants.
33
+ - Summarization and content generation.
34
+ - Research and educational applications.
35
+ - Semantic search and knowledge retrieval.
36
+
37
+ ## Model Details
38
+
39
+ ### Architecture
40
+
41
+ - **Base Model**: Microsoft phi-4
42
+ - **Quantization Technique**: GPTQ (4-bit)
43
+ - **Language**: English
44
+ - **Training Objective**: Instruction-following fine-tuning
Phi-4-GPTQ/config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-4",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {},
9
+ "bos_token_id": 100257,
10
+ "embd_pdrop": 0.0,
11
+ "eos_token_id": 100257,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 17920,
16
+ "max_position_embeddings": 16384,
17
+ "model_type": "phi3",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 10,
21
+ "original_max_position_embeddings": 16384,
22
+ "pad_token_id": 100257,
23
+ "quantization_config": {
24
+ "amp": true,
25
+ "autoround_version": "0.4.4",
26
+ "batch_size": 8,
27
+ "bits": 4,
28
+ "damp_percent": 0.01,
29
+ "data_type": "int",
30
+ "desc_act": false,
31
+ "enable_minmax_tuning": true,
32
+ "enable_norm_bias_tuning": false,
33
+ "enable_quanted_input": true,
34
+ "gradient_accumulate_steps": 1,
35
+ "group_size": 128,
36
+ "iters": 256,
37
+ "low_gpu_mem_usage": false,
38
+ "lr": 0.00390625,
39
+ "minmax_lr": 0.00390625,
40
+ "nsamples": 128,
41
+ "quant_method": "gptq",
42
+ "scale_dtype": "torch.float16",
43
+ "seqlen": 2048,
44
+ "sym": true,
45
+ "to_quant_block_names": null,
46
+ "true_sequential": false
47
+ },
48
+ "resid_pdrop": 0.0,
49
+ "rms_norm_eps": 1e-05,
50
+ "rope_scaling": null,
51
+ "rope_theta": 250000,
52
+ "sliding_window": null,
53
+ "tie_word_embeddings": false,
54
+ "torch_dtype": "bfloat16",
55
+ "transformers_version": "4.47.1",
56
+ "use_cache": true,
57
+ "vocab_size": 100352
58
+ }
Phi-4-GPTQ/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100257,
4
+ "eos_token_id": [
5
+ 100257,
6
+ 100265
7
+ ],
8
+ "transformers_version": "4.47.1"
9
+ }
Phi-4-GPTQ/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Phi-4-GPTQ/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:609fb22f6b382707a5ada5ce16351612c581aafac62ed0e7fbb7900b5bd47c7d
3
+ size 4960209984
Phi-4-GPTQ/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72eb5170c5effca559be040bde2ee2124a4a796af7c1ee2beba530d1bfdde1fc
3
+ size 4183219664
Phi-4-GPTQ/model.safetensors.index.json ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9143347200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
24
+ "model.layers.0.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
25
+ "model.layers.0.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
40
+ "model.layers.1.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
41
+ "model.layers.1.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
42
+ "model.layers.1.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
43
+ "model.layers.1.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
51
+ "model.layers.10.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
52
+ "model.layers.10.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
53
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.10.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
55
+ "model.layers.10.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
56
+ "model.layers.10.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
57
+ "model.layers.10.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
58
+ "model.layers.10.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
59
+ "model.layers.10.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
60
+ "model.layers.10.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
61
+ "model.layers.10.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
62
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.11.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
64
+ "model.layers.11.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
65
+ "model.layers.11.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
66
+ "model.layers.11.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
67
+ "model.layers.11.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
68
+ "model.layers.11.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
69
+ "model.layers.11.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
70
+ "model.layers.11.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
71
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.11.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
73
+ "model.layers.11.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
74
+ "model.layers.11.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
75
+ "model.layers.11.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
76
+ "model.layers.11.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
77
+ "model.layers.11.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
78
+ "model.layers.11.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
79
+ "model.layers.11.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
80
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.12.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
82
+ "model.layers.12.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
83
+ "model.layers.12.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
84
+ "model.layers.12.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
85
+ "model.layers.12.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
86
+ "model.layers.12.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
87
+ "model.layers.12.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
88
+ "model.layers.12.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
89
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.12.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
91
+ "model.layers.12.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
92
+ "model.layers.12.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
93
+ "model.layers.12.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
94
+ "model.layers.12.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
95
+ "model.layers.12.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
96
+ "model.layers.12.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
97
+ "model.layers.12.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
98
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.13.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
100
+ "model.layers.13.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
101
+ "model.layers.13.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
102
+ "model.layers.13.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
103
+ "model.layers.13.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
104
+ "model.layers.13.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
105
+ "model.layers.13.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
106
+ "model.layers.13.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
107
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.13.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
109
+ "model.layers.13.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
110
+ "model.layers.13.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
111
+ "model.layers.13.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
112
+ "model.layers.13.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
113
+ "model.layers.13.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
114
+ "model.layers.13.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
115
+ "model.layers.13.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
116
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.14.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
118
+ "model.layers.14.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
119
+ "model.layers.14.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
120
+ "model.layers.14.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
121
+ "model.layers.14.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
122
+ "model.layers.14.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
123
+ "model.layers.14.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
124
+ "model.layers.14.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
125
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.14.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
127
+ "model.layers.14.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
128
+ "model.layers.14.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
129
+ "model.layers.14.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
130
+ "model.layers.14.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
131
+ "model.layers.14.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
132
+ "model.layers.14.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
133
+ "model.layers.14.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
134
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.15.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
136
+ "model.layers.15.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
137
+ "model.layers.15.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
138
+ "model.layers.15.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
139
+ "model.layers.15.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
140
+ "model.layers.15.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
141
+ "model.layers.15.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
142
+ "model.layers.15.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
143
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.15.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
145
+ "model.layers.15.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
146
+ "model.layers.15.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
147
+ "model.layers.15.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
148
+ "model.layers.15.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
149
+ "model.layers.15.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
150
+ "model.layers.15.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
151
+ "model.layers.15.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
152
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.16.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
154
+ "model.layers.16.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
155
+ "model.layers.16.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
156
+ "model.layers.16.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
157
+ "model.layers.16.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
158
+ "model.layers.16.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
159
+ "model.layers.16.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
160
+ "model.layers.16.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
161
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.16.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
163
+ "model.layers.16.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
164
+ "model.layers.16.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
165
+ "model.layers.16.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
166
+ "model.layers.16.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
167
+ "model.layers.16.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
168
+ "model.layers.16.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
169
+ "model.layers.16.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
170
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.17.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
172
+ "model.layers.17.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
173
+ "model.layers.17.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
174
+ "model.layers.17.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
175
+ "model.layers.17.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
176
+ "model.layers.17.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
177
+ "model.layers.17.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
178
+ "model.layers.17.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
179
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.17.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
181
+ "model.layers.17.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
182
+ "model.layers.17.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
183
+ "model.layers.17.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
184
+ "model.layers.17.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
185
+ "model.layers.17.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
186
+ "model.layers.17.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
187
+ "model.layers.17.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
188
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.18.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
190
+ "model.layers.18.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
191
+ "model.layers.18.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
192
+ "model.layers.18.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
193
+ "model.layers.18.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
194
+ "model.layers.18.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
195
+ "model.layers.18.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
196
+ "model.layers.18.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
197
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.18.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
199
+ "model.layers.18.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
200
+ "model.layers.18.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
201
+ "model.layers.18.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
202
+ "model.layers.18.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
203
+ "model.layers.18.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
204
+ "model.layers.18.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
205
+ "model.layers.18.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
206
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.19.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
208
+ "model.layers.19.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
209
+ "model.layers.19.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
210
+ "model.layers.19.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
211
+ "model.layers.19.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
212
+ "model.layers.19.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
213
+ "model.layers.19.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
214
+ "model.layers.19.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
215
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.19.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
217
+ "model.layers.19.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
218
+ "model.layers.19.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
219
+ "model.layers.19.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
220
+ "model.layers.19.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
221
+ "model.layers.19.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
222
+ "model.layers.19.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
223
+ "model.layers.19.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
224
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.2.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
226
+ "model.layers.2.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
227
+ "model.layers.2.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
228
+ "model.layers.2.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
229
+ "model.layers.2.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
230
+ "model.layers.2.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
231
+ "model.layers.2.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
232
+ "model.layers.2.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
233
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.2.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
235
+ "model.layers.2.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
236
+ "model.layers.2.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
237
+ "model.layers.2.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
238
+ "model.layers.2.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
239
+ "model.layers.2.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
240
+ "model.layers.2.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
241
+ "model.layers.2.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
242
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.20.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
244
+ "model.layers.20.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
245
+ "model.layers.20.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
246
+ "model.layers.20.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
247
+ "model.layers.20.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
248
+ "model.layers.20.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
249
+ "model.layers.20.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
250
+ "model.layers.20.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
251
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.20.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
253
+ "model.layers.20.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
254
+ "model.layers.20.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
255
+ "model.layers.20.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
256
+ "model.layers.20.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
257
+ "model.layers.20.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
258
+ "model.layers.20.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
259
+ "model.layers.20.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
260
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.21.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
262
+ "model.layers.21.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
263
+ "model.layers.21.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
264
+ "model.layers.21.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
265
+ "model.layers.21.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
266
+ "model.layers.21.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
267
+ "model.layers.21.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
268
+ "model.layers.21.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
269
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.21.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
271
+ "model.layers.21.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
272
+ "model.layers.21.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
273
+ "model.layers.21.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
274
+ "model.layers.21.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
275
+ "model.layers.21.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
276
+ "model.layers.21.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
277
+ "model.layers.21.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
278
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.22.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
280
+ "model.layers.22.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
281
+ "model.layers.22.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
282
+ "model.layers.22.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
283
+ "model.layers.22.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
284
+ "model.layers.22.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
285
+ "model.layers.22.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
286
+ "model.layers.22.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
287
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.22.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
289
+ "model.layers.22.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
290
+ "model.layers.22.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
291
+ "model.layers.22.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
292
+ "model.layers.22.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
293
+ "model.layers.22.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
294
+ "model.layers.22.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
295
+ "model.layers.22.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
296
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.23.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
298
+ "model.layers.23.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
299
+ "model.layers.23.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
300
+ "model.layers.23.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
301
+ "model.layers.23.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
302
+ "model.layers.23.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
303
+ "model.layers.23.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
304
+ "model.layers.23.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
305
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.23.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
307
+ "model.layers.23.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
308
+ "model.layers.23.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
309
+ "model.layers.23.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
310
+ "model.layers.23.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
311
+ "model.layers.23.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
312
+ "model.layers.23.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
313
+ "model.layers.23.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
314
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.24.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
316
+ "model.layers.24.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
317
+ "model.layers.24.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
318
+ "model.layers.24.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
319
+ "model.layers.24.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
320
+ "model.layers.24.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
321
+ "model.layers.24.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
322
+ "model.layers.24.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
323
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.24.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
325
+ "model.layers.24.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
326
+ "model.layers.24.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
327
+ "model.layers.24.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
328
+ "model.layers.24.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
329
+ "model.layers.24.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
330
+ "model.layers.24.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
331
+ "model.layers.24.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
332
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.25.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
334
+ "model.layers.25.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
335
+ "model.layers.25.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
336
+ "model.layers.25.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
337
+ "model.layers.25.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
338
+ "model.layers.25.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
339
+ "model.layers.25.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
340
+ "model.layers.25.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
341
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.25.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
343
+ "model.layers.25.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
344
+ "model.layers.25.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
345
+ "model.layers.25.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
346
+ "model.layers.25.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
347
+ "model.layers.25.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
348
+ "model.layers.25.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
349
+ "model.layers.25.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
350
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.26.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
352
+ "model.layers.26.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
353
+ "model.layers.26.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
354
+ "model.layers.26.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
355
+ "model.layers.26.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
356
+ "model.layers.26.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
357
+ "model.layers.26.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
358
+ "model.layers.26.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
359
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.26.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
361
+ "model.layers.26.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
362
+ "model.layers.26.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
363
+ "model.layers.26.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
364
+ "model.layers.26.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
365
+ "model.layers.26.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
366
+ "model.layers.26.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
367
+ "model.layers.26.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
368
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
369
+ "model.layers.27.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
370
+ "model.layers.27.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
371
+ "model.layers.27.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
372
+ "model.layers.27.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
373
+ "model.layers.27.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
374
+ "model.layers.27.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
375
+ "model.layers.27.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
376
+ "model.layers.27.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
377
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
378
+ "model.layers.27.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
379
+ "model.layers.27.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
380
+ "model.layers.27.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
381
+ "model.layers.27.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
382
+ "model.layers.27.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
383
+ "model.layers.27.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
384
+ "model.layers.27.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
385
+ "model.layers.27.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
386
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
387
+ "model.layers.28.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
388
+ "model.layers.28.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
389
+ "model.layers.28.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
390
+ "model.layers.28.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
391
+ "model.layers.28.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
392
+ "model.layers.28.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
393
+ "model.layers.28.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
394
+ "model.layers.28.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
395
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
396
+ "model.layers.28.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
397
+ "model.layers.28.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
398
+ "model.layers.28.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
399
+ "model.layers.28.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
400
+ "model.layers.28.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
401
+ "model.layers.28.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
402
+ "model.layers.28.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
403
+ "model.layers.28.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
404
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
405
+ "model.layers.29.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
406
+ "model.layers.29.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
407
+ "model.layers.29.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
408
+ "model.layers.29.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
409
+ "model.layers.29.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
410
+ "model.layers.29.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
411
+ "model.layers.29.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
412
+ "model.layers.29.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
413
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
414
+ "model.layers.29.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
415
+ "model.layers.29.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
416
+ "model.layers.29.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
417
+ "model.layers.29.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
418
+ "model.layers.29.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
419
+ "model.layers.29.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
420
+ "model.layers.29.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
421
+ "model.layers.29.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
422
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.3.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
424
+ "model.layers.3.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
425
+ "model.layers.3.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
426
+ "model.layers.3.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
427
+ "model.layers.3.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
428
+ "model.layers.3.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
429
+ "model.layers.3.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
430
+ "model.layers.3.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
431
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.3.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
433
+ "model.layers.3.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
434
+ "model.layers.3.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
435
+ "model.layers.3.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
436
+ "model.layers.3.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
437
+ "model.layers.3.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
438
+ "model.layers.3.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
439
+ "model.layers.3.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
440
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
441
+ "model.layers.30.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
442
+ "model.layers.30.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
443
+ "model.layers.30.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
444
+ "model.layers.30.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
445
+ "model.layers.30.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
446
+ "model.layers.30.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
447
+ "model.layers.30.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
448
+ "model.layers.30.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
449
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
450
+ "model.layers.30.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
451
+ "model.layers.30.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
452
+ "model.layers.30.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
453
+ "model.layers.30.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
454
+ "model.layers.30.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
455
+ "model.layers.30.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
456
+ "model.layers.30.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
457
+ "model.layers.30.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
458
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
459
+ "model.layers.31.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
460
+ "model.layers.31.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
461
+ "model.layers.31.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
462
+ "model.layers.31.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
463
+ "model.layers.31.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
464
+ "model.layers.31.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
465
+ "model.layers.31.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
466
+ "model.layers.31.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
467
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
468
+ "model.layers.31.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
469
+ "model.layers.31.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
470
+ "model.layers.31.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
471
+ "model.layers.31.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
472
+ "model.layers.31.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
473
+ "model.layers.31.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
474
+ "model.layers.31.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
475
+ "model.layers.31.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
476
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
477
+ "model.layers.32.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
478
+ "model.layers.32.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
479
+ "model.layers.32.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
480
+ "model.layers.32.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
481
+ "model.layers.32.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
482
+ "model.layers.32.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
483
+ "model.layers.32.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
484
+ "model.layers.32.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
485
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
486
+ "model.layers.32.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
487
+ "model.layers.32.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
488
+ "model.layers.32.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
489
+ "model.layers.32.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
490
+ "model.layers.32.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
491
+ "model.layers.32.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
492
+ "model.layers.32.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
493
+ "model.layers.32.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
494
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
495
+ "model.layers.33.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
496
+ "model.layers.33.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
497
+ "model.layers.33.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
498
+ "model.layers.33.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
499
+ "model.layers.33.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
500
+ "model.layers.33.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
501
+ "model.layers.33.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
502
+ "model.layers.33.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
503
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
504
+ "model.layers.33.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
505
+ "model.layers.33.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
506
+ "model.layers.33.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
507
+ "model.layers.33.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
508
+ "model.layers.33.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
509
+ "model.layers.33.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
510
+ "model.layers.33.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
511
+ "model.layers.33.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
512
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
513
+ "model.layers.34.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
514
+ "model.layers.34.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
515
+ "model.layers.34.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
516
+ "model.layers.34.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
517
+ "model.layers.34.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
518
+ "model.layers.34.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
519
+ "model.layers.34.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
520
+ "model.layers.34.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
521
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
522
+ "model.layers.34.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
523
+ "model.layers.34.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
524
+ "model.layers.34.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
525
+ "model.layers.34.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
526
+ "model.layers.34.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
527
+ "model.layers.34.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
528
+ "model.layers.34.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
529
+ "model.layers.34.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
530
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
531
+ "model.layers.35.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
532
+ "model.layers.35.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
533
+ "model.layers.35.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
534
+ "model.layers.35.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
535
+ "model.layers.35.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
536
+ "model.layers.35.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
537
+ "model.layers.35.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
538
+ "model.layers.35.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
539
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
540
+ "model.layers.35.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
541
+ "model.layers.35.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
542
+ "model.layers.35.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
543
+ "model.layers.35.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
544
+ "model.layers.35.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
545
+ "model.layers.35.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
546
+ "model.layers.35.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
547
+ "model.layers.35.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
548
+ "model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
549
+ "model.layers.36.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
550
+ "model.layers.36.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
551
+ "model.layers.36.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
552
+ "model.layers.36.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
553
+ "model.layers.36.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
554
+ "model.layers.36.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
555
+ "model.layers.36.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
556
+ "model.layers.36.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
557
+ "model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
558
+ "model.layers.36.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
559
+ "model.layers.36.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
560
+ "model.layers.36.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
561
+ "model.layers.36.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
562
+ "model.layers.36.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
563
+ "model.layers.36.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
564
+ "model.layers.36.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
565
+ "model.layers.36.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
566
+ "model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
567
+ "model.layers.37.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
568
+ "model.layers.37.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
569
+ "model.layers.37.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
570
+ "model.layers.37.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
571
+ "model.layers.37.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
572
+ "model.layers.37.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
573
+ "model.layers.37.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
574
+ "model.layers.37.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
575
+ "model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
576
+ "model.layers.37.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
577
+ "model.layers.37.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
578
+ "model.layers.37.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
579
+ "model.layers.37.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
580
+ "model.layers.37.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
581
+ "model.layers.37.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
582
+ "model.layers.37.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
583
+ "model.layers.37.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
584
+ "model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
585
+ "model.layers.38.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
586
+ "model.layers.38.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
587
+ "model.layers.38.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
588
+ "model.layers.38.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
589
+ "model.layers.38.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
590
+ "model.layers.38.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
591
+ "model.layers.38.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
592
+ "model.layers.38.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
593
+ "model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
594
+ "model.layers.38.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
595
+ "model.layers.38.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
596
+ "model.layers.38.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
597
+ "model.layers.38.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
598
+ "model.layers.38.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
599
+ "model.layers.38.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
600
+ "model.layers.38.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
601
+ "model.layers.38.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
602
+ "model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
603
+ "model.layers.39.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
604
+ "model.layers.39.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
605
+ "model.layers.39.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
606
+ "model.layers.39.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
607
+ "model.layers.39.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
608
+ "model.layers.39.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
609
+ "model.layers.39.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
610
+ "model.layers.39.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
611
+ "model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
612
+ "model.layers.39.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
613
+ "model.layers.39.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
614
+ "model.layers.39.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
615
+ "model.layers.39.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
616
+ "model.layers.39.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
617
+ "model.layers.39.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
618
+ "model.layers.39.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
619
+ "model.layers.39.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
620
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
621
+ "model.layers.4.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
622
+ "model.layers.4.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
623
+ "model.layers.4.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
624
+ "model.layers.4.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
625
+ "model.layers.4.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
626
+ "model.layers.4.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
627
+ "model.layers.4.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
628
+ "model.layers.4.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
629
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
630
+ "model.layers.4.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
631
+ "model.layers.4.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
632
+ "model.layers.4.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
633
+ "model.layers.4.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
634
+ "model.layers.4.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
635
+ "model.layers.4.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
636
+ "model.layers.4.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
637
+ "model.layers.4.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
638
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
639
+ "model.layers.5.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
640
+ "model.layers.5.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
641
+ "model.layers.5.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
642
+ "model.layers.5.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
643
+ "model.layers.5.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
644
+ "model.layers.5.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
645
+ "model.layers.5.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
646
+ "model.layers.5.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
647
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
648
+ "model.layers.5.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
649
+ "model.layers.5.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
650
+ "model.layers.5.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
651
+ "model.layers.5.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
652
+ "model.layers.5.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
653
+ "model.layers.5.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
654
+ "model.layers.5.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
655
+ "model.layers.5.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
656
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
657
+ "model.layers.6.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
658
+ "model.layers.6.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
659
+ "model.layers.6.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
660
+ "model.layers.6.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
661
+ "model.layers.6.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
662
+ "model.layers.6.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
663
+ "model.layers.6.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
664
+ "model.layers.6.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
665
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
666
+ "model.layers.6.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
667
+ "model.layers.6.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
668
+ "model.layers.6.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
669
+ "model.layers.6.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
670
+ "model.layers.6.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
671
+ "model.layers.6.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
672
+ "model.layers.6.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
673
+ "model.layers.6.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
674
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
675
+ "model.layers.7.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
676
+ "model.layers.7.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
677
+ "model.layers.7.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
678
+ "model.layers.7.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
679
+ "model.layers.7.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
680
+ "model.layers.7.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
681
+ "model.layers.7.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
682
+ "model.layers.7.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
683
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
684
+ "model.layers.7.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
685
+ "model.layers.7.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
686
+ "model.layers.7.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
687
+ "model.layers.7.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
688
+ "model.layers.7.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
689
+ "model.layers.7.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
690
+ "model.layers.7.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
691
+ "model.layers.7.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
692
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
693
+ "model.layers.8.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
694
+ "model.layers.8.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
695
+ "model.layers.8.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
696
+ "model.layers.8.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
697
+ "model.layers.8.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
698
+ "model.layers.8.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
699
+ "model.layers.8.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
700
+ "model.layers.8.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
701
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
702
+ "model.layers.8.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
703
+ "model.layers.8.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
704
+ "model.layers.8.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
705
+ "model.layers.8.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
706
+ "model.layers.8.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
707
+ "model.layers.8.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
708
+ "model.layers.8.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
709
+ "model.layers.8.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
710
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
711
+ "model.layers.9.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
712
+ "model.layers.9.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
713
+ "model.layers.9.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
714
+ "model.layers.9.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
715
+ "model.layers.9.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
716
+ "model.layers.9.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
717
+ "model.layers.9.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
718
+ "model.layers.9.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
719
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
720
+ "model.layers.9.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
721
+ "model.layers.9.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
722
+ "model.layers.9.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
723
+ "model.layers.9.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
724
+ "model.layers.9.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
725
+ "model.layers.9.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
726
+ "model.layers.9.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
727
+ "model.layers.9.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
728
+ "model.norm.weight": "model-00002-of-00002.safetensors"
729
+ }
730
+ }
Phi-4-GPTQ/quantize_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "sym": true,
5
+ "data_type": "int",
6
+ "enable_quanted_input": true,
7
+ "enable_minmax_tuning": true,
8
+ "seqlen": 2048,
9
+ "batch_size": 8,
10
+ "scale_dtype": "torch.float16",
11
+ "lr": 0.00390625,
12
+ "minmax_lr": 0.00390625,
13
+ "gradient_accumulate_steps": 1,
14
+ "iters": 256,
15
+ "amp": true,
16
+ "nsamples": 128,
17
+ "low_gpu_mem_usage": false,
18
+ "to_quant_block_names": null,
19
+ "enable_norm_bias_tuning": false,
20
+ "autoround_version": "0.4.4",
21
+ "quant_method": "gptq",
22
+ "desc_act": false,
23
+ "true_sequential": false,
24
+ "damp_percent": 0.01
25
+ }
Phi-4-GPTQ/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": true,
5
+ "normalized": false,
6
+ "rstrip": true,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": true,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": "<|endoftext|>"
24
+ }
Phi-4-GPTQ/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Phi-4-GPTQ/tokenizer_config.json ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "100256": {
5
+ "content": "<|dummy_0|>",
6
+ "lstrip": true,
7
+ "normalized": false,
8
+ "rstrip": true,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100257": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": true,
15
+ "normalized": false,
16
+ "rstrip": true,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "100258": {
21
+ "content": "<|fim_prefix|>",
22
+ "lstrip": true,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "100259": {
29
+ "content": "<|fim_middle|>",
30
+ "lstrip": true,
31
+ "normalized": false,
32
+ "rstrip": true,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "100260": {
37
+ "content": "<|fim_suffix|>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": true,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "100261": {
45
+ "content": "<|dummy_1|>",
46
+ "lstrip": true,
47
+ "normalized": false,
48
+ "rstrip": true,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "100262": {
53
+ "content": "<|dummy_2|>",
54
+ "lstrip": true,
55
+ "normalized": false,
56
+ "rstrip": true,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "100263": {
61
+ "content": "<|dummy_3|>",
62
+ "lstrip": true,
63
+ "normalized": false,
64
+ "rstrip": true,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "100264": {
69
+ "content": "<|im_start|>",
70
+ "lstrip": true,
71
+ "normalized": false,
72
+ "rstrip": true,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "100265": {
77
+ "content": "<|im_end|>",
78
+ "lstrip": true,
79
+ "normalized": false,
80
+ "rstrip": true,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "100266": {
85
+ "content": "<|im_sep|>",
86
+ "lstrip": true,
87
+ "normalized": false,
88
+ "rstrip": true,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "100267": {
93
+ "content": "<|dummy_4|>",
94
+ "lstrip": true,
95
+ "normalized": false,
96
+ "rstrip": true,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "100268": {
101
+ "content": "<|dummy_5|>",
102
+ "lstrip": true,
103
+ "normalized": false,
104
+ "rstrip": true,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "100269": {
109
+ "content": "<|dummy_6|>",
110
+ "lstrip": true,
111
+ "normalized": false,
112
+ "rstrip": true,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "100270": {
117
+ "content": "<|dummy_7|>",
118
+ "lstrip": true,
119
+ "normalized": false,
120
+ "rstrip": true,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "100271": {
125
+ "content": "<|dummy_8|>",
126
+ "lstrip": true,
127
+ "normalized": false,
128
+ "rstrip": true,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "100272": {
133
+ "content": "<|dummy_9|>",
134
+ "lstrip": true,
135
+ "normalized": false,
136
+ "rstrip": true,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "100273": {
141
+ "content": "<|dummy_10|>",
142
+ "lstrip": true,
143
+ "normalized": false,
144
+ "rstrip": true,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "100274": {
149
+ "content": "<|dummy_11|>",
150
+ "lstrip": true,
151
+ "normalized": false,
152
+ "rstrip": true,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "100275": {
157
+ "content": "<|dummy_12|>",
158
+ "lstrip": true,
159
+ "normalized": false,
160
+ "rstrip": true,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "100276": {
165
+ "content": "<|endofprompt|>",
166
+ "lstrip": true,
167
+ "normalized": false,
168
+ "rstrip": true,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "100277": {
173
+ "content": "<|dummy_13|>",
174
+ "lstrip": true,
175
+ "normalized": false,
176
+ "rstrip": true,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "100278": {
181
+ "content": "<|dummy_14|>",
182
+ "lstrip": true,
183
+ "normalized": false,
184
+ "rstrip": true,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "100279": {
189
+ "content": "<|dummy_15|>",
190
+ "lstrip": true,
191
+ "normalized": false,
192
+ "rstrip": true,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "100280": {
197
+ "content": "<|dummy_16|>",
198
+ "lstrip": true,
199
+ "normalized": false,
200
+ "rstrip": true,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "100281": {
205
+ "content": "<|dummy_17|>",
206
+ "lstrip": true,
207
+ "normalized": false,
208
+ "rstrip": true,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "100282": {
213
+ "content": "<|dummy_18|>",
214
+ "lstrip": true,
215
+ "normalized": false,
216
+ "rstrip": true,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "100283": {
221
+ "content": "<|dummy_19|>",
222
+ "lstrip": true,
223
+ "normalized": false,
224
+ "rstrip": true,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "100284": {
229
+ "content": "<|dummy_20|>",
230
+ "lstrip": true,
231
+ "normalized": false,
232
+ "rstrip": true,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "100285": {
237
+ "content": "<|dummy_21|>",
238
+ "lstrip": true,
239
+ "normalized": false,
240
+ "rstrip": true,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "100286": {
245
+ "content": "<|dummy_22|>",
246
+ "lstrip": true,
247
+ "normalized": false,
248
+ "rstrip": true,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "100287": {
253
+ "content": "<|dummy_23|>",
254
+ "lstrip": true,
255
+ "normalized": false,
256
+ "rstrip": true,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "100288": {
261
+ "content": "<|dummy_24|>",
262
+ "lstrip": true,
263
+ "normalized": false,
264
+ "rstrip": true,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "100289": {
269
+ "content": "<|dummy_25|>",
270
+ "lstrip": true,
271
+ "normalized": false,
272
+ "rstrip": true,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "100290": {
277
+ "content": "<|dummy_26|>",
278
+ "lstrip": true,
279
+ "normalized": false,
280
+ "rstrip": true,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "100291": {
285
+ "content": "<|dummy_27|>",
286
+ "lstrip": true,
287
+ "normalized": false,
288
+ "rstrip": true,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "100292": {
293
+ "content": "<|dummy_28|>",
294
+ "lstrip": true,
295
+ "normalized": false,
296
+ "rstrip": true,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "100293": {
301
+ "content": "<|dummy_29|>",
302
+ "lstrip": true,
303
+ "normalized": false,
304
+ "rstrip": true,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "100294": {
309
+ "content": "<|dummy_30|>",
310
+ "lstrip": true,
311
+ "normalized": false,
312
+ "rstrip": true,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "100295": {
317
+ "content": "<|dummy_31|>",
318
+ "lstrip": true,
319
+ "normalized": false,
320
+ "rstrip": true,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "100296": {
325
+ "content": "<|dummy_32|>",
326
+ "lstrip": true,
327
+ "normalized": false,
328
+ "rstrip": true,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "100297": {
333
+ "content": "<|dummy_33|>",
334
+ "lstrip": true,
335
+ "normalized": false,
336
+ "rstrip": true,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "100298": {
341
+ "content": "<|dummy_34|>",
342
+ "lstrip": true,
343
+ "normalized": false,
344
+ "rstrip": true,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "100299": {
349
+ "content": "<|dummy_35|>",
350
+ "lstrip": true,
351
+ "normalized": false,
352
+ "rstrip": true,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "100300": {
357
+ "content": "<|dummy_36|>",
358
+ "lstrip": true,
359
+ "normalized": false,
360
+ "rstrip": true,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "100301": {
365
+ "content": "<|dummy_37|>",
366
+ "lstrip": true,
367
+ "normalized": false,
368
+ "rstrip": true,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "100302": {
373
+ "content": "<|dummy_38|>",
374
+ "lstrip": true,
375
+ "normalized": false,
376
+ "rstrip": true,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "100303": {
381
+ "content": "<|dummy_39|>",
382
+ "lstrip": true,
383
+ "normalized": false,
384
+ "rstrip": true,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "100304": {
389
+ "content": "<|dummy_40|>",
390
+ "lstrip": true,
391
+ "normalized": false,
392
+ "rstrip": true,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "100305": {
397
+ "content": "<|dummy_41|>",
398
+ "lstrip": true,
399
+ "normalized": false,
400
+ "rstrip": true,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "100306": {
405
+ "content": "<|dummy_42|>",
406
+ "lstrip": true,
407
+ "normalized": false,
408
+ "rstrip": true,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "100307": {
413
+ "content": "<|dummy_43|>",
414
+ "lstrip": true,
415
+ "normalized": false,
416
+ "rstrip": true,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "100308": {
421
+ "content": "<|dummy_44|>",
422
+ "lstrip": true,
423
+ "normalized": false,
424
+ "rstrip": true,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "100309": {
429
+ "content": "<|dummy_45|>",
430
+ "lstrip": true,
431
+ "normalized": false,
432
+ "rstrip": true,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "100310": {
437
+ "content": "<|dummy_46|>",
438
+ "lstrip": true,
439
+ "normalized": false,
440
+ "rstrip": true,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "100311": {
445
+ "content": "<|dummy_47|>",
446
+ "lstrip": true,
447
+ "normalized": false,
448
+ "rstrip": true,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "100312": {
453
+ "content": "<|dummy_48|>",
454
+ "lstrip": true,
455
+ "normalized": false,
456
+ "rstrip": true,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "100313": {
461
+ "content": "<|dummy_49|>",
462
+ "lstrip": true,
463
+ "normalized": false,
464
+ "rstrip": true,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "100314": {
469
+ "content": "<|dummy_50|>",
470
+ "lstrip": true,
471
+ "normalized": false,
472
+ "rstrip": true,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "100315": {
477
+ "content": "<|dummy_51|>",
478
+ "lstrip": true,
479
+ "normalized": false,
480
+ "rstrip": true,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "100316": {
485
+ "content": "<|dummy_52|>",
486
+ "lstrip": true,
487
+ "normalized": false,
488
+ "rstrip": true,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "100317": {
493
+ "content": "<|dummy_53|>",
494
+ "lstrip": true,
495
+ "normalized": false,
496
+ "rstrip": true,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "100318": {
501
+ "content": "<|dummy_54|>",
502
+ "lstrip": true,
503
+ "normalized": false,
504
+ "rstrip": true,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "100319": {
509
+ "content": "<|dummy_55|>",
510
+ "lstrip": true,
511
+ "normalized": false,
512
+ "rstrip": true,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "100320": {
517
+ "content": "<|dummy_56|>",
518
+ "lstrip": true,
519
+ "normalized": false,
520
+ "rstrip": true,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "100321": {
525
+ "content": "<|dummy_57|>",
526
+ "lstrip": true,
527
+ "normalized": false,
528
+ "rstrip": true,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "100322": {
533
+ "content": "<|dummy_58|>",
534
+ "lstrip": true,
535
+ "normalized": false,
536
+ "rstrip": true,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "100323": {
541
+ "content": "<|dummy_59|>",
542
+ "lstrip": true,
543
+ "normalized": false,
544
+ "rstrip": true,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "100324": {
549
+ "content": "<|dummy_60|>",
550
+ "lstrip": true,
551
+ "normalized": false,
552
+ "rstrip": true,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "100325": {
557
+ "content": "<|dummy_61|>",
558
+ "lstrip": true,
559
+ "normalized": false,
560
+ "rstrip": true,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "100326": {
565
+ "content": "<|dummy_62|>",
566
+ "lstrip": true,
567
+ "normalized": false,
568
+ "rstrip": true,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "100327": {
573
+ "content": "<|dummy_63|>",
574
+ "lstrip": true,
575
+ "normalized": false,
576
+ "rstrip": true,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "100328": {
581
+ "content": "<|dummy_64|>",
582
+ "lstrip": true,
583
+ "normalized": false,
584
+ "rstrip": true,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "100329": {
589
+ "content": "<|dummy_65|>",
590
+ "lstrip": true,
591
+ "normalized": false,
592
+ "rstrip": true,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "100330": {
597
+ "content": "<|dummy_66|>",
598
+ "lstrip": true,
599
+ "normalized": false,
600
+ "rstrip": true,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "100331": {
605
+ "content": "<|dummy_67|>",
606
+ "lstrip": true,
607
+ "normalized": false,
608
+ "rstrip": true,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "100332": {
613
+ "content": "<|dummy_68|>",
614
+ "lstrip": true,
615
+ "normalized": false,
616
+ "rstrip": true,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "100333": {
621
+ "content": "<|dummy_69|>",
622
+ "lstrip": true,
623
+ "normalized": false,
624
+ "rstrip": true,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "100334": {
629
+ "content": "<|dummy_70|>",
630
+ "lstrip": true,
631
+ "normalized": false,
632
+ "rstrip": true,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "100335": {
637
+ "content": "<|dummy_71|>",
638
+ "lstrip": true,
639
+ "normalized": false,
640
+ "rstrip": true,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "100336": {
645
+ "content": "<|dummy_72|>",
646
+ "lstrip": true,
647
+ "normalized": false,
648
+ "rstrip": true,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "100337": {
653
+ "content": "<|dummy_73|>",
654
+ "lstrip": true,
655
+ "normalized": false,
656
+ "rstrip": true,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "100338": {
661
+ "content": "<|dummy_74|>",
662
+ "lstrip": true,
663
+ "normalized": false,
664
+ "rstrip": true,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "100339": {
669
+ "content": "<|dummy_75|>",
670
+ "lstrip": true,
671
+ "normalized": false,
672
+ "rstrip": true,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "100340": {
677
+ "content": "<|dummy_76|>",
678
+ "lstrip": true,
679
+ "normalized": false,
680
+ "rstrip": true,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "100341": {
685
+ "content": "<|dummy_77|>",
686
+ "lstrip": true,
687
+ "normalized": false,
688
+ "rstrip": true,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "100342": {
693
+ "content": "<|dummy_78|>",
694
+ "lstrip": true,
695
+ "normalized": false,
696
+ "rstrip": true,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "100343": {
701
+ "content": "<|dummy_79|>",
702
+ "lstrip": true,
703
+ "normalized": false,
704
+ "rstrip": true,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "100344": {
709
+ "content": "<|dummy_80|>",
710
+ "lstrip": true,
711
+ "normalized": false,
712
+ "rstrip": true,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "100345": {
717
+ "content": "<|dummy_81|>",
718
+ "lstrip": true,
719
+ "normalized": false,
720
+ "rstrip": true,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "100346": {
725
+ "content": "<|dummy_82|>",
726
+ "lstrip": true,
727
+ "normalized": false,
728
+ "rstrip": true,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "100347": {
733
+ "content": "<|dummy_83|>",
734
+ "lstrip": true,
735
+ "normalized": false,
736
+ "rstrip": true,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "100348": {
741
+ "content": "<|dummy_84|>",
742
+ "lstrip": true,
743
+ "normalized": false,
744
+ "rstrip": true,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "100349": {
749
+ "content": "<|dummy_85|>",
750
+ "lstrip": true,
751
+ "normalized": false,
752
+ "rstrip": true,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "100350": {
757
+ "content": "<|dummy_86|>",
758
+ "lstrip": true,
759
+ "normalized": false,
760
+ "rstrip": true,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "100351": {
765
+ "content": "<|dummy_87|>",
766
+ "lstrip": true,
767
+ "normalized": false,
768
+ "rstrip": true,
769
+ "single_word": false,
770
+ "special": true
771
+ }
772
+ },
773
+ "bos_token": "<|endoftext|>",
774
+ "chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|><|im_start|>assistant<|im_sep|>'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}",
775
+ "clean_up_tokenization_spaces": false,
776
+ "eos_token": "<|endoftext|>",
777
+ "extra_special_tokens": {},
778
+ "model_max_length": 16384,
779
+ "pad_token": "<|endoftext|>",
780
+ "tokenizer_class": "GPT2Tokenizer",
781
+ "unk_token": "<|endoftext|>"
782
+ }
Phi-4-GPTQ/vocab.json ADDED
The diff for this file is too large to render. See raw diff