add models
Browse files- Mistral-Small-24B-3.1/.gitattributes +36 -0
- Mistral-Small-24B-3.1/README.md +561 -0
- Mistral-Small-24B-3.1/chat_template.json +3 -0
- Mistral-Small-24B-3.1/config.json +249 -0
- Mistral-Small-24B-3.1/generation_config.json +6 -0
- Mistral-Small-24B-3.1/model-00001-of-00004.safetensors +3 -0
- Mistral-Small-24B-3.1/model-00002-of-00004.safetensors +3 -0
- Mistral-Small-24B-3.1/model-00003-of-00004.safetensors +3 -0
- Mistral-Small-24B-3.1/model-00004-of-00004.safetensors +3 -0
- Mistral-Small-24B-3.1/model.safetensors.index.json +0 -0
- Mistral-Small-24B-3.1/preprocessor_config.json +34 -0
- Mistral-Small-24B-3.1/processor_config.json +8 -0
- Mistral-Small-24B-3.1/recipe.yaml +11 -0
- Mistral-Small-24B-3.1/special_tokens_map.json +1032 -0
- Mistral-Small-24B-3.1/tokenizer.json +3 -0
- Mistral-Small-24B-3.1/tokenizer_config.json +0 -0
- Phi-4-GPTQ/.gitattributes +35 -0
- Phi-4-GPTQ/README.md +44 -0
- Phi-4-GPTQ/config.json +58 -0
- Phi-4-GPTQ/generation_config.json +9 -0
- Phi-4-GPTQ/merges.txt +0 -0
- Phi-4-GPTQ/model-00001-of-00002.safetensors +3 -0
- Phi-4-GPTQ/model-00002-of-00002.safetensors +3 -0
- Phi-4-GPTQ/model.safetensors.index.json +730 -0
- Phi-4-GPTQ/quantize_config.json +25 -0
- Phi-4-GPTQ/special_tokens_map.json +24 -0
- Phi-4-GPTQ/tokenizer.json +0 -0
- Phi-4-GPTQ/tokenizer_config.json +782 -0
- Phi-4-GPTQ/vocab.json +0 -0
Mistral-Small-24B-3.1/.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Mistral-Small-24B-3.1/README.md
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- pt
|
8 |
+
- it
|
9 |
+
- ja
|
10 |
+
- ko
|
11 |
+
- ru
|
12 |
+
- zh
|
13 |
+
- ar
|
14 |
+
- fa
|
15 |
+
- id
|
16 |
+
- ms
|
17 |
+
- ne
|
18 |
+
- pl
|
19 |
+
- ro
|
20 |
+
- sr
|
21 |
+
- sv
|
22 |
+
- tr
|
23 |
+
- uk
|
24 |
+
- vi
|
25 |
+
- hi
|
26 |
+
- bn
|
27 |
+
license: apache-2.0
|
28 |
+
library_name: vllm
|
29 |
+
base_model:
|
30 |
+
- mistralai/Mistral-Small-3.1-24B-Instruct-2503
|
31 |
+
pipeline_tag: image-text-to-text
|
32 |
+
tags:
|
33 |
+
- neuralmagic
|
34 |
+
- redhat
|
35 |
+
- llmcompressor
|
36 |
+
- quantized
|
37 |
+
- int4
|
38 |
+
---
|
39 |
+
|
40 |
+
# Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
|
41 |
+
|
42 |
+
## Model Overview
|
43 |
+
- **Model Architecture:** Mistral3ForConditionalGeneration
|
44 |
+
- **Input:** Text / Image
|
45 |
+
- **Output:** Text
|
46 |
+
- **Model Optimizations:**
|
47 |
+
- **Weight quantization:** INT4
|
48 |
+
- **Intended Use Cases:** It is ideal for:
|
49 |
+
- Fast-response conversational agents.
|
50 |
+
- Low-latency function calling.
|
51 |
+
- Subject matter experts via fine-tuning.
|
52 |
+
- Local inference for hobbyists and organizations handling sensitive data.
|
53 |
+
- Programming and math reasoning.
|
54 |
+
- Long document understanding.
|
55 |
+
- Visual understanding.
|
56 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
|
57 |
+
- **Release Date:** 04/15/2025
|
58 |
+
- **Version:** 1.0
|
59 |
+
- **Model Developers:** Red Hat (Neural Magic)
|
60 |
+
|
61 |
+
|
62 |
+
### Model Optimizations
|
63 |
+
|
64 |
+
This model was obtained by quantizing the weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to INT4 data type.
|
65 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
|
66 |
+
|
67 |
+
Only the weights of the linear operators within transformers blocks are quantized.
|
68 |
+
Weights are quantized using a symmetric per-group scheme, with group size 128.
|
69 |
+
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
|
70 |
+
|
71 |
+
|
72 |
+
## Deployment
|
73 |
+
|
74 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
75 |
+
|
76 |
+
```python
|
77 |
+
from vllm import LLM, SamplingParams
|
78 |
+
from transformers import AutoProcessor
|
79 |
+
|
80 |
+
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"
|
81 |
+
number_gpus = 1
|
82 |
+
|
83 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
|
84 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
85 |
+
|
86 |
+
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
|
87 |
+
|
88 |
+
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
89 |
+
|
90 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
91 |
+
|
92 |
+
outputs = llm.generate(prompts, sampling_params)
|
93 |
+
|
94 |
+
generated_text = outputs[0].outputs[0].text
|
95 |
+
print(generated_text)
|
96 |
+
```
|
97 |
+
|
98 |
+
|
99 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
100 |
+
|
101 |
+
## Creation
|
102 |
+
|
103 |
+
<details>
|
104 |
+
<summary>Creation details</summary>
|
105 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
106 |
+
|
107 |
+
|
108 |
+
```python
|
109 |
+
from transformers import AutoProcessor
|
110 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
111 |
+
from llmcompressor.transformers import oneshot
|
112 |
+
from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration
|
113 |
+
from datasets import load_dataset, interleave_datasets
|
114 |
+
from PIL import Image
|
115 |
+
import io
|
116 |
+
|
117 |
+
# Load model
|
118 |
+
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
119 |
+
model_name = model_stub.split("/")[-1]
|
120 |
+
|
121 |
+
num_text_samples = 1024
|
122 |
+
num_vision_samples = 1024
|
123 |
+
max_seq_len = 8192
|
124 |
+
|
125 |
+
processor = AutoProcessor.from_pretrained(model_stub)
|
126 |
+
|
127 |
+
model = TraceableMistral3ForConditionalGeneration.from_pretrained(
|
128 |
+
model_stub,
|
129 |
+
device_map="auto",
|
130 |
+
torch_dtype="auto",
|
131 |
+
)
|
132 |
+
|
133 |
+
# Text-only data subset
|
134 |
+
def preprocess_text(example):
|
135 |
+
input = {
|
136 |
+
"text": processor.apply_chat_template(
|
137 |
+
example["messages"],
|
138 |
+
add_generation_prompt=False,
|
139 |
+
),
|
140 |
+
"images": None,
|
141 |
+
}
|
142 |
+
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
|
143 |
+
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
|
144 |
+
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
|
145 |
+
return tokenized_input
|
146 |
+
|
147 |
+
dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples))
|
148 |
+
dst = dst.map(preprocess_text, remove_columns=dst.column_names)
|
149 |
+
|
150 |
+
# Text + vision data subset
|
151 |
+
def preprocess_vision(example):
|
152 |
+
messages = []
|
153 |
+
image = None
|
154 |
+
for message in example["messages"]:
|
155 |
+
message_content = []
|
156 |
+
for content in message["content"]:
|
157 |
+
if content["type"] == "text":
|
158 |
+
message_content.append({"type": "text", "text": content["text"]})
|
159 |
+
else:
|
160 |
+
message_content.append({"type": "image"})
|
161 |
+
image = Image.open(io.BytesIO(content["image"]))
|
162 |
+
|
163 |
+
messages.append(
|
164 |
+
{
|
165 |
+
"role": message["role"],
|
166 |
+
"content": message_content,
|
167 |
+
}
|
168 |
+
)
|
169 |
+
|
170 |
+
input = {
|
171 |
+
"text": processor.apply_chat_template(
|
172 |
+
messages,
|
173 |
+
add_generation_prompt=False,
|
174 |
+
),
|
175 |
+
"images": image,
|
176 |
+
}
|
177 |
+
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
|
178 |
+
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
|
179 |
+
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
|
180 |
+
return tokenized_input
|
181 |
+
|
182 |
+
dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples))
|
183 |
+
dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names)
|
184 |
+
|
185 |
+
# Interleave subsets
|
186 |
+
ds = interleave_datasets((dsv, dst))
|
187 |
+
|
188 |
+
# Configure the quantization algorithm and scheme
|
189 |
+
recipe = GPTQModifier(
|
190 |
+
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
|
191 |
+
sequential_targets=["MistralDecoderLayer"],
|
192 |
+
dampening_frac=0.01,
|
193 |
+
targets="Linear",
|
194 |
+
scheme="W4A16",
|
195 |
+
)
|
196 |
+
|
197 |
+
# Define data collator
|
198 |
+
def data_collator(batch):
|
199 |
+
import torch
|
200 |
+
assert len(batch) == 1
|
201 |
+
collated = {}
|
202 |
+
for k, v in batch[0].items():
|
203 |
+
if v is None:
|
204 |
+
continue
|
205 |
+
if k == "input_ids":
|
206 |
+
collated[k] = torch.LongTensor(v)
|
207 |
+
elif k == "pixel_values":
|
208 |
+
collated[k] = torch.tensor(v, dtype=torch.bfloat16)
|
209 |
+
else:
|
210 |
+
collated[k] = torch.tensor(v)
|
211 |
+
return collated
|
212 |
+
|
213 |
+
|
214 |
+
# Apply quantization
|
215 |
+
oneshot(
|
216 |
+
model=model,
|
217 |
+
dataset=ds,
|
218 |
+
recipe=recipe,
|
219 |
+
max_seq_length=max_seq_len,
|
220 |
+
data_collator=data_collator,
|
221 |
+
num_calibration_samples=num_text_samples + num_vision_samples,
|
222 |
+
)
|
223 |
+
|
224 |
+
# Save to disk in compressed-tensors format
|
225 |
+
save_path = model_name + "-quantized.w4a16"
|
226 |
+
model.save_pretrained(save_path)
|
227 |
+
processor.save_pretrained(save_path)
|
228 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
229 |
+
```
|
230 |
+
</details>
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
## Evaluation
|
235 |
+
|
236 |
+
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP.
|
237 |
+
Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus).
|
238 |
+
[vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases.
|
239 |
+
|
240 |
+
<details>
|
241 |
+
<summary>Evaluation details</summary>
|
242 |
+
|
243 |
+
**MMLU**
|
244 |
+
```
|
245 |
+
lm_eval \
|
246 |
+
--model vllm \
|
247 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
248 |
+
--tasks mmlu \
|
249 |
+
--num_fewshot 5 \
|
250 |
+
--apply_chat_template\
|
251 |
+
--fewshot_as_multiturn \
|
252 |
+
--batch_size auto
|
253 |
+
```
|
254 |
+
|
255 |
+
**ARC Challenge**
|
256 |
+
```
|
257 |
+
lm_eval \
|
258 |
+
--model vllm \
|
259 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
260 |
+
--tasks arc_challenge \
|
261 |
+
--num_fewshot 25 \
|
262 |
+
--apply_chat_template\
|
263 |
+
--fewshot_as_multiturn \
|
264 |
+
--batch_size auto
|
265 |
+
```
|
266 |
+
|
267 |
+
**GSM8k**
|
268 |
+
```
|
269 |
+
lm_eval \
|
270 |
+
--model vllm \
|
271 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
272 |
+
--tasks gsm8k \
|
273 |
+
--num_fewshot 8 \
|
274 |
+
--apply_chat_template\
|
275 |
+
--fewshot_as_multiturn \
|
276 |
+
--batch_size auto
|
277 |
+
```
|
278 |
+
|
279 |
+
**Hellaswag**
|
280 |
+
```
|
281 |
+
lm_eval \
|
282 |
+
--model vllm \
|
283 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
284 |
+
--tasks hellaswag \
|
285 |
+
--num_fewshot 10 \
|
286 |
+
--apply_chat_template\
|
287 |
+
--fewshot_as_multiturn \
|
288 |
+
--batch_size auto
|
289 |
+
```
|
290 |
+
|
291 |
+
**Winogrande**
|
292 |
+
```
|
293 |
+
lm_eval \
|
294 |
+
--model vllm \
|
295 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
296 |
+
--tasks winogrande \
|
297 |
+
--num_fewshot 5 \
|
298 |
+
--apply_chat_template\
|
299 |
+
--fewshot_as_multiturn \
|
300 |
+
--batch_size auto
|
301 |
+
```
|
302 |
+
|
303 |
+
**TruthfulQA**
|
304 |
+
```
|
305 |
+
lm_eval \
|
306 |
+
--model vllm \
|
307 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
308 |
+
--tasks truthfulqa \
|
309 |
+
--num_fewshot 0 \
|
310 |
+
--apply_chat_template\
|
311 |
+
--batch_size auto
|
312 |
+
```
|
313 |
+
|
314 |
+
**MMLU-pro**
|
315 |
+
```
|
316 |
+
lm_eval \
|
317 |
+
--model vllm \
|
318 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
319 |
+
--tasks mmlu_pro \
|
320 |
+
--num_fewshot 5 \
|
321 |
+
--apply_chat_template\
|
322 |
+
--fewshot_as_multiturn \
|
323 |
+
--batch_size auto
|
324 |
+
```
|
325 |
+
|
326 |
+
**MMMU**
|
327 |
+
```
|
328 |
+
lm_eval \
|
329 |
+
--model vllm \
|
330 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
331 |
+
--tasks mmmu_val \
|
332 |
+
--apply_chat_template\
|
333 |
+
--batch_size auto
|
334 |
+
```
|
335 |
+
|
336 |
+
**ChartQA**
|
337 |
+
```
|
338 |
+
lm_eval \
|
339 |
+
--model vllm \
|
340 |
+
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
|
341 |
+
--tasks chartqa \
|
342 |
+
--apply_chat_template\
|
343 |
+
--batch_size auto
|
344 |
+
```
|
345 |
+
|
346 |
+
**Coding**
|
347 |
+
|
348 |
+
The commands below can be used for mbpp by simply replacing the dataset name.
|
349 |
+
|
350 |
+
*Generation*
|
351 |
+
```
|
352 |
+
python3 codegen/generate.py \
|
353 |
+
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 \
|
354 |
+
--bs 16 \
|
355 |
+
--temperature 0.2 \
|
356 |
+
--n_samples 50 \
|
357 |
+
--root "." \
|
358 |
+
--dataset humaneval
|
359 |
+
|
360 |
+
```
|
361 |
+
|
362 |
+
*Sanitization*
|
363 |
+
```
|
364 |
+
python3 evalplus/sanitize.py \
|
365 |
+
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2
|
366 |
+
```
|
367 |
+
|
368 |
+
*Evaluation*
|
369 |
+
```
|
370 |
+
evalplus.evaluate \
|
371 |
+
--dataset humaneval \
|
372 |
+
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2-sanitized
|
373 |
+
```
|
374 |
+
</details>
|
375 |
+
|
376 |
+
### Accuracy
|
377 |
+
|
378 |
+
<table>
|
379 |
+
<tr>
|
380 |
+
<th>Category
|
381 |
+
</th>
|
382 |
+
<th>Benchmark
|
383 |
+
</th>
|
384 |
+
<th>Mistral-Small-3.1-24B-Instruct-2503
|
385 |
+
</th>
|
386 |
+
<th>Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16<br>(this model)
|
387 |
+
</th>
|
388 |
+
<th>Recovery
|
389 |
+
</th>
|
390 |
+
</tr>
|
391 |
+
<tr>
|
392 |
+
<td rowspan="7" ><strong>OpenLLM v1</strong>
|
393 |
+
</td>
|
394 |
+
<td>MMLU (5-shot)
|
395 |
+
</td>
|
396 |
+
<td>80.67
|
397 |
+
</td>
|
398 |
+
<td>79.74
|
399 |
+
</td>
|
400 |
+
<td>98.9%
|
401 |
+
</td>
|
402 |
+
</tr>
|
403 |
+
<tr>
|
404 |
+
<td>ARC Challenge (25-shot)
|
405 |
+
</td>
|
406 |
+
<td>72.78
|
407 |
+
</td>
|
408 |
+
<td>72.18
|
409 |
+
</td>
|
410 |
+
<td>99.2%
|
411 |
+
</td>
|
412 |
+
</tr>
|
413 |
+
<tr>
|
414 |
+
<td>GSM-8K (5-shot, strict-match)
|
415 |
+
</td>
|
416 |
+
<td>58.68
|
417 |
+
</td>
|
418 |
+
<td>59.59
|
419 |
+
</td>
|
420 |
+
<td>101.6%
|
421 |
+
</td>
|
422 |
+
</tr>
|
423 |
+
<tr>
|
424 |
+
<td>Hellaswag (10-shot)
|
425 |
+
</td>
|
426 |
+
<td>83.70
|
427 |
+
</td>
|
428 |
+
<td>83.25
|
429 |
+
</td>
|
430 |
+
<td>99.5%
|
431 |
+
</td>
|
432 |
+
</tr>
|
433 |
+
<tr>
|
434 |
+
<td>Winogrande (5-shot)
|
435 |
+
</td>
|
436 |
+
<td>83.74
|
437 |
+
</td>
|
438 |
+
<td>83.43
|
439 |
+
</td>
|
440 |
+
<td>99.6%
|
441 |
+
</td>
|
442 |
+
</tr>
|
443 |
+
<tr>
|
444 |
+
<td>TruthfulQA (0-shot, mc2)
|
445 |
+
</td>
|
446 |
+
<td>70.62
|
447 |
+
</td>
|
448 |
+
<td>69.56
|
449 |
+
</td>
|
450 |
+
<td>98.5%
|
451 |
+
</td>
|
452 |
+
</tr>
|
453 |
+
<tr>
|
454 |
+
<td><strong>Average</strong>
|
455 |
+
</td>
|
456 |
+
<td><strong>75.03</strong>
|
457 |
+
</td>
|
458 |
+
<td><strong>74.63</strong>
|
459 |
+
</td>
|
460 |
+
<td><strong>99.5%</strong>
|
461 |
+
</td>
|
462 |
+
</tr>
|
463 |
+
<tr>
|
464 |
+
<td rowspan="3" ><strong></strong>
|
465 |
+
</td>
|
466 |
+
<td>MMLU-Pro (5-shot)
|
467 |
+
</td>
|
468 |
+
<td>67.25
|
469 |
+
</td>
|
470 |
+
<td>66.56
|
471 |
+
</td>
|
472 |
+
<td>99.0%
|
473 |
+
</td>
|
474 |
+
</tr>
|
475 |
+
<tr>
|
476 |
+
<td>GPQA CoT main (5-shot)
|
477 |
+
</td>
|
478 |
+
<td>42.63
|
479 |
+
</td>
|
480 |
+
<td>47.10
|
481 |
+
</td>
|
482 |
+
<td>110.5%
|
483 |
+
</td>
|
484 |
+
</tr>
|
485 |
+
<tr>
|
486 |
+
<td>GPQA CoT diamond (5-shot)
|
487 |
+
</td>
|
488 |
+
<td>45.96
|
489 |
+
</td>
|
490 |
+
<td>44.95
|
491 |
+
</td>
|
492 |
+
<td>97.80%
|
493 |
+
</td>
|
494 |
+
</tr>
|
495 |
+
<tr>
|
496 |
+
<td rowspan="4" ><strong>Coding</strong>
|
497 |
+
</td>
|
498 |
+
<td>HumanEval pass@1
|
499 |
+
</td>
|
500 |
+
<td>84.70
|
501 |
+
</td>
|
502 |
+
<td>84.60
|
503 |
+
</td>
|
504 |
+
<td>99.9%
|
505 |
+
</td>
|
506 |
+
</tr>
|
507 |
+
<tr>
|
508 |
+
<td>HumanEval+ pass@1
|
509 |
+
</td>
|
510 |
+
<td>79.50
|
511 |
+
</td>
|
512 |
+
<td>79.90
|
513 |
+
</td>
|
514 |
+
<td>100.5%
|
515 |
+
</td>
|
516 |
+
</tr>
|
517 |
+
<tr>
|
518 |
+
<td>MBPP pass@1
|
519 |
+
</td>
|
520 |
+
<td>71.10
|
521 |
+
</td>
|
522 |
+
<td>70.10
|
523 |
+
</td>
|
524 |
+
<td>98.6%
|
525 |
+
</td>
|
526 |
+
</tr>
|
527 |
+
<tr>
|
528 |
+
<td>MBPP+ pass@1
|
529 |
+
</td>
|
530 |
+
<td>60.60
|
531 |
+
</td>
|
532 |
+
<td>60.70
|
533 |
+
</td>
|
534 |
+
<td>100.2%
|
535 |
+
</td>
|
536 |
+
</tr>
|
537 |
+
<tr>
|
538 |
+
<td rowspan="2" ><strong>Vision</strong>
|
539 |
+
</td>
|
540 |
+
<td>MMMU (0-shot)
|
541 |
+
</td>
|
542 |
+
<td>52.11
|
543 |
+
</td>
|
544 |
+
<td>50.11
|
545 |
+
</td>
|
546 |
+
<td>96.2%
|
547 |
+
</td>
|
548 |
+
</tr>
|
549 |
+
<tr>
|
550 |
+
<td>ChartQA (0-shot)
|
551 |
+
</td>
|
552 |
+
<td>81.36
|
553 |
+
</td>
|
554 |
+
<td>80.92
|
555 |
+
</td>
|
556 |
+
<td>99.5%
|
557 |
+
</td>
|
558 |
+
</tr>
|
559 |
+
<tr>
|
560 |
+
</table>
|
561 |
+
|
Mistral-Small-24B-3.1/chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content'] %}\n {%- else %}\n {%- set system_message = messages[0]['content'][0]['text'] %}\n {%- endif %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {%- if message['content'] is string %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- else %}\n {{- '[INST]' }}\n {%- for block in message['content'] %}\n {%- if block['type'] == 'text' %}\n {{- block['text'] }}\n {%- elif block['type'] in ['image', 'image_url'] %}\n {{- '[IMG]' }}\n {%- else %}\n {{- raise_exception('Only text and image blocks are supported in message content!') }}\n {%- endif %}\n {%- endfor %}\n {{- '[/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'system' %}\n {%- if message['content'] is string %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- else %}\n {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {%- if message['content'] is string %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- message['content'][0]['text'] + eos_token }}\n {%- endif %}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}"
|
3 |
+
}
|
Mistral-Small-24B-3.1/config.json
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Mistral3ForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"image_token_index": 10,
|
6 |
+
"model_type": "mistral3",
|
7 |
+
"multimodal_projector_bias": false,
|
8 |
+
"projector_hidden_act": "gelu",
|
9 |
+
"quantization_config": {
|
10 |
+
"config_groups": {
|
11 |
+
"group_0": {
|
12 |
+
"input_activations": null,
|
13 |
+
"output_activations": null,
|
14 |
+
"targets": [
|
15 |
+
"Linear"
|
16 |
+
],
|
17 |
+
"weights": {
|
18 |
+
"actorder": "weight",
|
19 |
+
"block_structure": null,
|
20 |
+
"dynamic": false,
|
21 |
+
"group_size": 128,
|
22 |
+
"num_bits": 4,
|
23 |
+
"observer": "minmax",
|
24 |
+
"observer_kwargs": {},
|
25 |
+
"strategy": "group",
|
26 |
+
"symmetric": true,
|
27 |
+
"type": "int"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"format": "pack-quantized",
|
32 |
+
"global_compression_ratio": 1.4742778120818896,
|
33 |
+
"ignore": [
|
34 |
+
"vision_tower.transformer.layers.0.feed_forward.gate_proj",
|
35 |
+
"vision_tower.transformer.layers.0.feed_forward.up_proj",
|
36 |
+
"vision_tower.transformer.layers.0.feed_forward.down_proj",
|
37 |
+
"vision_tower.transformer.layers.0.attention.k_proj",
|
38 |
+
"vision_tower.transformer.layers.0.attention.v_proj",
|
39 |
+
"vision_tower.transformer.layers.0.attention.q_proj",
|
40 |
+
"vision_tower.transformer.layers.0.attention.o_proj",
|
41 |
+
"vision_tower.transformer.layers.1.feed_forward.gate_proj",
|
42 |
+
"vision_tower.transformer.layers.1.feed_forward.up_proj",
|
43 |
+
"vision_tower.transformer.layers.1.feed_forward.down_proj",
|
44 |
+
"vision_tower.transformer.layers.1.attention.k_proj",
|
45 |
+
"vision_tower.transformer.layers.1.attention.v_proj",
|
46 |
+
"vision_tower.transformer.layers.1.attention.q_proj",
|
47 |
+
"vision_tower.transformer.layers.1.attention.o_proj",
|
48 |
+
"vision_tower.transformer.layers.2.feed_forward.gate_proj",
|
49 |
+
"vision_tower.transformer.layers.2.feed_forward.up_proj",
|
50 |
+
"vision_tower.transformer.layers.2.feed_forward.down_proj",
|
51 |
+
"vision_tower.transformer.layers.2.attention.k_proj",
|
52 |
+
"vision_tower.transformer.layers.2.attention.v_proj",
|
53 |
+
"vision_tower.transformer.layers.2.attention.q_proj",
|
54 |
+
"vision_tower.transformer.layers.2.attention.o_proj",
|
55 |
+
"vision_tower.transformer.layers.3.feed_forward.gate_proj",
|
56 |
+
"vision_tower.transformer.layers.3.feed_forward.up_proj",
|
57 |
+
"vision_tower.transformer.layers.3.feed_forward.down_proj",
|
58 |
+
"vision_tower.transformer.layers.3.attention.k_proj",
|
59 |
+
"vision_tower.transformer.layers.3.attention.v_proj",
|
60 |
+
"vision_tower.transformer.layers.3.attention.q_proj",
|
61 |
+
"vision_tower.transformer.layers.3.attention.o_proj",
|
62 |
+
"vision_tower.transformer.layers.4.feed_forward.gate_proj",
|
63 |
+
"vision_tower.transformer.layers.4.feed_forward.up_proj",
|
64 |
+
"vision_tower.transformer.layers.4.feed_forward.down_proj",
|
65 |
+
"vision_tower.transformer.layers.4.attention.k_proj",
|
66 |
+
"vision_tower.transformer.layers.4.attention.v_proj",
|
67 |
+
"vision_tower.transformer.layers.4.attention.q_proj",
|
68 |
+
"vision_tower.transformer.layers.4.attention.o_proj",
|
69 |
+
"vision_tower.transformer.layers.5.feed_forward.gate_proj",
|
70 |
+
"vision_tower.transformer.layers.5.feed_forward.up_proj",
|
71 |
+
"vision_tower.transformer.layers.5.feed_forward.down_proj",
|
72 |
+
"vision_tower.transformer.layers.5.attention.k_proj",
|
73 |
+
"vision_tower.transformer.layers.5.attention.v_proj",
|
74 |
+
"vision_tower.transformer.layers.5.attention.q_proj",
|
75 |
+
"vision_tower.transformer.layers.5.attention.o_proj",
|
76 |
+
"vision_tower.transformer.layers.6.feed_forward.gate_proj",
|
77 |
+
"vision_tower.transformer.layers.6.feed_forward.up_proj",
|
78 |
+
"vision_tower.transformer.layers.6.feed_forward.down_proj",
|
79 |
+
"vision_tower.transformer.layers.6.attention.k_proj",
|
80 |
+
"vision_tower.transformer.layers.6.attention.v_proj",
|
81 |
+
"vision_tower.transformer.layers.6.attention.q_proj",
|
82 |
+
"vision_tower.transformer.layers.6.attention.o_proj",
|
83 |
+
"vision_tower.transformer.layers.7.feed_forward.gate_proj",
|
84 |
+
"vision_tower.transformer.layers.7.feed_forward.up_proj",
|
85 |
+
"vision_tower.transformer.layers.7.feed_forward.down_proj",
|
86 |
+
"vision_tower.transformer.layers.7.attention.k_proj",
|
87 |
+
"vision_tower.transformer.layers.7.attention.v_proj",
|
88 |
+
"vision_tower.transformer.layers.7.attention.q_proj",
|
89 |
+
"vision_tower.transformer.layers.7.attention.o_proj",
|
90 |
+
"vision_tower.transformer.layers.8.feed_forward.gate_proj",
|
91 |
+
"vision_tower.transformer.layers.8.feed_forward.up_proj",
|
92 |
+
"vision_tower.transformer.layers.8.feed_forward.down_proj",
|
93 |
+
"vision_tower.transformer.layers.8.attention.k_proj",
|
94 |
+
"vision_tower.transformer.layers.8.attention.v_proj",
|
95 |
+
"vision_tower.transformer.layers.8.attention.q_proj",
|
96 |
+
"vision_tower.transformer.layers.8.attention.o_proj",
|
97 |
+
"vision_tower.transformer.layers.9.feed_forward.gate_proj",
|
98 |
+
"vision_tower.transformer.layers.9.feed_forward.up_proj",
|
99 |
+
"vision_tower.transformer.layers.9.feed_forward.down_proj",
|
100 |
+
"vision_tower.transformer.layers.9.attention.k_proj",
|
101 |
+
"vision_tower.transformer.layers.9.attention.v_proj",
|
102 |
+
"vision_tower.transformer.layers.9.attention.q_proj",
|
103 |
+
"vision_tower.transformer.layers.9.attention.o_proj",
|
104 |
+
"vision_tower.transformer.layers.10.feed_forward.gate_proj",
|
105 |
+
"vision_tower.transformer.layers.10.feed_forward.up_proj",
|
106 |
+
"vision_tower.transformer.layers.10.feed_forward.down_proj",
|
107 |
+
"vision_tower.transformer.layers.10.attention.k_proj",
|
108 |
+
"vision_tower.transformer.layers.10.attention.v_proj",
|
109 |
+
"vision_tower.transformer.layers.10.attention.q_proj",
|
110 |
+
"vision_tower.transformer.layers.10.attention.o_proj",
|
111 |
+
"vision_tower.transformer.layers.11.feed_forward.gate_proj",
|
112 |
+
"vision_tower.transformer.layers.11.feed_forward.up_proj",
|
113 |
+
"vision_tower.transformer.layers.11.feed_forward.down_proj",
|
114 |
+
"vision_tower.transformer.layers.11.attention.k_proj",
|
115 |
+
"vision_tower.transformer.layers.11.attention.v_proj",
|
116 |
+
"vision_tower.transformer.layers.11.attention.q_proj",
|
117 |
+
"vision_tower.transformer.layers.11.attention.o_proj",
|
118 |
+
"vision_tower.transformer.layers.12.feed_forward.gate_proj",
|
119 |
+
"vision_tower.transformer.layers.12.feed_forward.up_proj",
|
120 |
+
"vision_tower.transformer.layers.12.feed_forward.down_proj",
|
121 |
+
"vision_tower.transformer.layers.12.attention.k_proj",
|
122 |
+
"vision_tower.transformer.layers.12.attention.v_proj",
|
123 |
+
"vision_tower.transformer.layers.12.attention.q_proj",
|
124 |
+
"vision_tower.transformer.layers.12.attention.o_proj",
|
125 |
+
"vision_tower.transformer.layers.13.feed_forward.gate_proj",
|
126 |
+
"vision_tower.transformer.layers.13.feed_forward.up_proj",
|
127 |
+
"vision_tower.transformer.layers.13.feed_forward.down_proj",
|
128 |
+
"vision_tower.transformer.layers.13.attention.k_proj",
|
129 |
+
"vision_tower.transformer.layers.13.attention.v_proj",
|
130 |
+
"vision_tower.transformer.layers.13.attention.q_proj",
|
131 |
+
"vision_tower.transformer.layers.13.attention.o_proj",
|
132 |
+
"vision_tower.transformer.layers.14.feed_forward.gate_proj",
|
133 |
+
"vision_tower.transformer.layers.14.feed_forward.up_proj",
|
134 |
+
"vision_tower.transformer.layers.14.feed_forward.down_proj",
|
135 |
+
"vision_tower.transformer.layers.14.attention.k_proj",
|
136 |
+
"vision_tower.transformer.layers.14.attention.v_proj",
|
137 |
+
"vision_tower.transformer.layers.14.attention.q_proj",
|
138 |
+
"vision_tower.transformer.layers.14.attention.o_proj",
|
139 |
+
"vision_tower.transformer.layers.15.feed_forward.gate_proj",
|
140 |
+
"vision_tower.transformer.layers.15.feed_forward.up_proj",
|
141 |
+
"vision_tower.transformer.layers.15.feed_forward.down_proj",
|
142 |
+
"vision_tower.transformer.layers.15.attention.k_proj",
|
143 |
+
"vision_tower.transformer.layers.15.attention.v_proj",
|
144 |
+
"vision_tower.transformer.layers.15.attention.q_proj",
|
145 |
+
"vision_tower.transformer.layers.15.attention.o_proj",
|
146 |
+
"vision_tower.transformer.layers.16.feed_forward.gate_proj",
|
147 |
+
"vision_tower.transformer.layers.16.feed_forward.up_proj",
|
148 |
+
"vision_tower.transformer.layers.16.feed_forward.down_proj",
|
149 |
+
"vision_tower.transformer.layers.16.attention.k_proj",
|
150 |
+
"vision_tower.transformer.layers.16.attention.v_proj",
|
151 |
+
"vision_tower.transformer.layers.16.attention.q_proj",
|
152 |
+
"vision_tower.transformer.layers.16.attention.o_proj",
|
153 |
+
"vision_tower.transformer.layers.17.feed_forward.gate_proj",
|
154 |
+
"vision_tower.transformer.layers.17.feed_forward.up_proj",
|
155 |
+
"vision_tower.transformer.layers.17.feed_forward.down_proj",
|
156 |
+
"vision_tower.transformer.layers.17.attention.k_proj",
|
157 |
+
"vision_tower.transformer.layers.17.attention.v_proj",
|
158 |
+
"vision_tower.transformer.layers.17.attention.q_proj",
|
159 |
+
"vision_tower.transformer.layers.17.attention.o_proj",
|
160 |
+
"vision_tower.transformer.layers.18.feed_forward.gate_proj",
|
161 |
+
"vision_tower.transformer.layers.18.feed_forward.up_proj",
|
162 |
+
"vision_tower.transformer.layers.18.feed_forward.down_proj",
|
163 |
+
"vision_tower.transformer.layers.18.attention.k_proj",
|
164 |
+
"vision_tower.transformer.layers.18.attention.v_proj",
|
165 |
+
"vision_tower.transformer.layers.18.attention.q_proj",
|
166 |
+
"vision_tower.transformer.layers.18.attention.o_proj",
|
167 |
+
"vision_tower.transformer.layers.19.feed_forward.gate_proj",
|
168 |
+
"vision_tower.transformer.layers.19.feed_forward.up_proj",
|
169 |
+
"vision_tower.transformer.layers.19.feed_forward.down_proj",
|
170 |
+
"vision_tower.transformer.layers.19.attention.k_proj",
|
171 |
+
"vision_tower.transformer.layers.19.attention.v_proj",
|
172 |
+
"vision_tower.transformer.layers.19.attention.q_proj",
|
173 |
+
"vision_tower.transformer.layers.19.attention.o_proj",
|
174 |
+
"vision_tower.transformer.layers.20.feed_forward.gate_proj",
|
175 |
+
"vision_tower.transformer.layers.20.feed_forward.up_proj",
|
176 |
+
"vision_tower.transformer.layers.20.feed_forward.down_proj",
|
177 |
+
"vision_tower.transformer.layers.20.attention.k_proj",
|
178 |
+
"vision_tower.transformer.layers.20.attention.v_proj",
|
179 |
+
"vision_tower.transformer.layers.20.attention.q_proj",
|
180 |
+
"vision_tower.transformer.layers.20.attention.o_proj",
|
181 |
+
"vision_tower.transformer.layers.21.feed_forward.gate_proj",
|
182 |
+
"vision_tower.transformer.layers.21.feed_forward.up_proj",
|
183 |
+
"vision_tower.transformer.layers.21.feed_forward.down_proj",
|
184 |
+
"vision_tower.transformer.layers.21.attention.k_proj",
|
185 |
+
"vision_tower.transformer.layers.21.attention.v_proj",
|
186 |
+
"vision_tower.transformer.layers.21.attention.q_proj",
|
187 |
+
"vision_tower.transformer.layers.21.attention.o_proj",
|
188 |
+
"vision_tower.transformer.layers.22.feed_forward.gate_proj",
|
189 |
+
"vision_tower.transformer.layers.22.feed_forward.up_proj",
|
190 |
+
"vision_tower.transformer.layers.22.feed_forward.down_proj",
|
191 |
+
"vision_tower.transformer.layers.22.attention.k_proj",
|
192 |
+
"vision_tower.transformer.layers.22.attention.v_proj",
|
193 |
+
"vision_tower.transformer.layers.22.attention.q_proj",
|
194 |
+
"vision_tower.transformer.layers.22.attention.o_proj",
|
195 |
+
"vision_tower.transformer.layers.23.feed_forward.gate_proj",
|
196 |
+
"vision_tower.transformer.layers.23.feed_forward.up_proj",
|
197 |
+
"vision_tower.transformer.layers.23.feed_forward.down_proj",
|
198 |
+
"vision_tower.transformer.layers.23.attention.k_proj",
|
199 |
+
"vision_tower.transformer.layers.23.attention.v_proj",
|
200 |
+
"vision_tower.transformer.layers.23.attention.q_proj",
|
201 |
+
"vision_tower.transformer.layers.23.attention.o_proj",
|
202 |
+
"multi_modal_projector.patch_merger.merging_layer",
|
203 |
+
"multi_modal_projector.linear_1",
|
204 |
+
"multi_modal_projector.linear_2",
|
205 |
+
"language_model.lm_head"
|
206 |
+
],
|
207 |
+
"kv_cache_scheme": null,
|
208 |
+
"quant_method": "compressed-tensors",
|
209 |
+
"quantization_status": "compressed"
|
210 |
+
},
|
211 |
+
"spatial_merge_size": 2,
|
212 |
+
"text_config": {
|
213 |
+
"_attn_implementation_autoset": true,
|
214 |
+
"attention_dropout": 0.0,
|
215 |
+
"head_dim": 128,
|
216 |
+
"hidden_act": "silu",
|
217 |
+
"hidden_size": 5120,
|
218 |
+
"initializer_range": 0.02,
|
219 |
+
"intermediate_size": 32768,
|
220 |
+
"max_position_embeddings": 131072,
|
221 |
+
"model_type": "mistral",
|
222 |
+
"num_attention_heads": 32,
|
223 |
+
"num_hidden_layers": 40,
|
224 |
+
"num_key_value_heads": 8,
|
225 |
+
"rms_norm_eps": 1e-05,
|
226 |
+
"rope_theta": 1000000000.0,
|
227 |
+
"sliding_window": null,
|
228 |
+
"use_cache": true,
|
229 |
+
"vocab_size": 131072
|
230 |
+
},
|
231 |
+
"torch_dtype": "bfloat16",
|
232 |
+
"transformers_version": "4.52.0.dev0",
|
233 |
+
"vision_config": {
|
234 |
+
"attention_dropout": 0.0,
|
235 |
+
"head_dim": 64,
|
236 |
+
"hidden_act": "gelu",
|
237 |
+
"hidden_size": 1024,
|
238 |
+
"image_size": 1540,
|
239 |
+
"initializer_range": 0.02,
|
240 |
+
"intermediate_size": 4096,
|
241 |
+
"model_type": "pixtral",
|
242 |
+
"num_attention_heads": 16,
|
243 |
+
"num_channels": 3,
|
244 |
+
"num_hidden_layers": 24,
|
245 |
+
"patch_size": 14,
|
246 |
+
"rope_theta": 10000.0
|
247 |
+
},
|
248 |
+
"vision_feature_layer": -1
|
249 |
+
}
|
Mistral-Small-24B-3.1/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.52.0.dev0"
|
6 |
+
}
|
Mistral-Small-24B-3.1/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0410f5c2e3361be5b2ead577ffe59869ca858a394f27c8bbdb5e225152a36065
|
3 |
+
size 4999392136
|
Mistral-Small-24B-3.1/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f489b95165422629849fd1207bf8b606bc20520256c9961752d9d34ca19a75e0
|
3 |
+
size 4985419312
|
Mistral-Small-24B-3.1/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37fafff9d17a87a9edff930708dd937b09c1d0861251160327731cbf9e721dbc
|
3 |
+
size 3698511448
|
Mistral-Small-24B-3.1/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0712cb93d3b9d05902f1c99d04294296cdfa37829a5f56d6e9a879b280dc346e
|
3 |
+
size 1342177424
|
Mistral-Small-24B-3.1/model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Mistral-Small-24B-3.1/preprocessor_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": null,
|
3 |
+
"data_format": "channels_first",
|
4 |
+
"default_to_square": true,
|
5 |
+
"device": null,
|
6 |
+
"do_center_crop": null,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "PixtralImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"input_data_format": null,
|
23 |
+
"patch_size": {
|
24 |
+
"height": 14,
|
25 |
+
"width": 14
|
26 |
+
},
|
27 |
+
"processor_class": "PixtralProcessor",
|
28 |
+
"resample": 3,
|
29 |
+
"rescale_factor": 0.00392156862745098,
|
30 |
+
"return_tensors": null,
|
31 |
+
"size": {
|
32 |
+
"longest_edge": 1540
|
33 |
+
}
|
34 |
+
}
|
Mistral-Small-24B-3.1/processor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image_break_token": "[IMG_BREAK]",
|
3 |
+
"image_end_token": "[IMG_END]",
|
4 |
+
"image_token": "[IMG]",
|
5 |
+
"patch_size": 14,
|
6 |
+
"processor_class": "PixtralProcessor",
|
7 |
+
"spatial_merge_size": 2
|
8 |
+
}
|
Mistral-Small-24B-3.1/recipe.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
quant_stage:
|
2 |
+
quant_modifiers:
|
3 |
+
GPTQModifier:
|
4 |
+
ignore: [language_model.lm_head, 're:vision_tower.*', 're:multi_modal_projector.*']
|
5 |
+
sequential_targets: [MistralDecoderLayer]
|
6 |
+
dampening_frac: 0.01
|
7 |
+
config_groups:
|
8 |
+
group0:
|
9 |
+
targets: [Linear]
|
10 |
+
weights: {num_bits: 4, type: int, strategy: group, group_size: 128, symmetric: true,
|
11 |
+
actorder: weight, observer: minmax}
|
Mistral-Small-24B-3.1/special_tokens_map.json
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>",
|
6 |
+
"[INST]",
|
7 |
+
"[/INST]",
|
8 |
+
"[AVAILABLE_TOOLS]",
|
9 |
+
"[/AVAILABLE_TOOLS]",
|
10 |
+
"[TOOL_RESULTS]",
|
11 |
+
"[/TOOL_RESULTS]",
|
12 |
+
"[TOOL_CALLS]",
|
13 |
+
"[IMG]",
|
14 |
+
"<pad>",
|
15 |
+
"[IMG_BREAK]",
|
16 |
+
"[IMG_END]",
|
17 |
+
"[PREFIX]",
|
18 |
+
"[MIDDLE]",
|
19 |
+
"[SUFFIX]",
|
20 |
+
"[SYSTEM_PROMPT]",
|
21 |
+
"[/SYSTEM_PROMPT]",
|
22 |
+
"[TOOL_CONTENT]",
|
23 |
+
"<SPECIAL_20>",
|
24 |
+
"<SPECIAL_21>",
|
25 |
+
"<SPECIAL_22>",
|
26 |
+
"<SPECIAL_23>",
|
27 |
+
"<SPECIAL_24>",
|
28 |
+
"<SPECIAL_25>",
|
29 |
+
"<SPECIAL_26>",
|
30 |
+
"<SPECIAL_27>",
|
31 |
+
"<SPECIAL_28>",
|
32 |
+
"<SPECIAL_29>",
|
33 |
+
"<SPECIAL_30>",
|
34 |
+
"<SPECIAL_31>",
|
35 |
+
"<SPECIAL_32>",
|
36 |
+
"<SPECIAL_33>",
|
37 |
+
"<SPECIAL_34>",
|
38 |
+
"<SPECIAL_35>",
|
39 |
+
"<SPECIAL_36>",
|
40 |
+
"<SPECIAL_37>",
|
41 |
+
"<SPECIAL_38>",
|
42 |
+
"<SPECIAL_39>",
|
43 |
+
"<SPECIAL_40>",
|
44 |
+
"<SPECIAL_41>",
|
45 |
+
"<SPECIAL_42>",
|
46 |
+
"<SPECIAL_43>",
|
47 |
+
"<SPECIAL_44>",
|
48 |
+
"<SPECIAL_45>",
|
49 |
+
"<SPECIAL_46>",
|
50 |
+
"<SPECIAL_47>",
|
51 |
+
"<SPECIAL_48>",
|
52 |
+
"<SPECIAL_49>",
|
53 |
+
"<SPECIAL_50>",
|
54 |
+
"<SPECIAL_51>",
|
55 |
+
"<SPECIAL_52>",
|
56 |
+
"<SPECIAL_53>",
|
57 |
+
"<SPECIAL_54>",
|
58 |
+
"<SPECIAL_55>",
|
59 |
+
"<SPECIAL_56>",
|
60 |
+
"<SPECIAL_57>",
|
61 |
+
"<SPECIAL_58>",
|
62 |
+
"<SPECIAL_59>",
|
63 |
+
"<SPECIAL_60>",
|
64 |
+
"<SPECIAL_61>",
|
65 |
+
"<SPECIAL_62>",
|
66 |
+
"<SPECIAL_63>",
|
67 |
+
"<SPECIAL_64>",
|
68 |
+
"<SPECIAL_65>",
|
69 |
+
"<SPECIAL_66>",
|
70 |
+
"<SPECIAL_67>",
|
71 |
+
"<SPECIAL_68>",
|
72 |
+
"<SPECIAL_69>",
|
73 |
+
"<SPECIAL_70>",
|
74 |
+
"<SPECIAL_71>",
|
75 |
+
"<SPECIAL_72>",
|
76 |
+
"<SPECIAL_73>",
|
77 |
+
"<SPECIAL_74>",
|
78 |
+
"<SPECIAL_75>",
|
79 |
+
"<SPECIAL_76>",
|
80 |
+
"<SPECIAL_77>",
|
81 |
+
"<SPECIAL_78>",
|
82 |
+
"<SPECIAL_79>",
|
83 |
+
"<SPECIAL_80>",
|
84 |
+
"<SPECIAL_81>",
|
85 |
+
"<SPECIAL_82>",
|
86 |
+
"<SPECIAL_83>",
|
87 |
+
"<SPECIAL_84>",
|
88 |
+
"<SPECIAL_85>",
|
89 |
+
"<SPECIAL_86>",
|
90 |
+
"<SPECIAL_87>",
|
91 |
+
"<SPECIAL_88>",
|
92 |
+
"<SPECIAL_89>",
|
93 |
+
"<SPECIAL_90>",
|
94 |
+
"<SPECIAL_91>",
|
95 |
+
"<SPECIAL_92>",
|
96 |
+
"<SPECIAL_93>",
|
97 |
+
"<SPECIAL_94>",
|
98 |
+
"<SPECIAL_95>",
|
99 |
+
"<SPECIAL_96>",
|
100 |
+
"<SPECIAL_97>",
|
101 |
+
"<SPECIAL_98>",
|
102 |
+
"<SPECIAL_99>",
|
103 |
+
"<SPECIAL_100>",
|
104 |
+
"<SPECIAL_101>",
|
105 |
+
"<SPECIAL_102>",
|
106 |
+
"<SPECIAL_103>",
|
107 |
+
"<SPECIAL_104>",
|
108 |
+
"<SPECIAL_105>",
|
109 |
+
"<SPECIAL_106>",
|
110 |
+
"<SPECIAL_107>",
|
111 |
+
"<SPECIAL_108>",
|
112 |
+
"<SPECIAL_109>",
|
113 |
+
"<SPECIAL_110>",
|
114 |
+
"<SPECIAL_111>",
|
115 |
+
"<SPECIAL_112>",
|
116 |
+
"<SPECIAL_113>",
|
117 |
+
"<SPECIAL_114>",
|
118 |
+
"<SPECIAL_115>",
|
119 |
+
"<SPECIAL_116>",
|
120 |
+
"<SPECIAL_117>",
|
121 |
+
"<SPECIAL_118>",
|
122 |
+
"<SPECIAL_119>",
|
123 |
+
"<SPECIAL_120>",
|
124 |
+
"<SPECIAL_121>",
|
125 |
+
"<SPECIAL_122>",
|
126 |
+
"<SPECIAL_123>",
|
127 |
+
"<SPECIAL_124>",
|
128 |
+
"<SPECIAL_125>",
|
129 |
+
"<SPECIAL_126>",
|
130 |
+
"<SPECIAL_127>",
|
131 |
+
"<SPECIAL_128>",
|
132 |
+
"<SPECIAL_129>",
|
133 |
+
"<SPECIAL_130>",
|
134 |
+
"<SPECIAL_131>",
|
135 |
+
"<SPECIAL_132>",
|
136 |
+
"<SPECIAL_133>",
|
137 |
+
"<SPECIAL_134>",
|
138 |
+
"<SPECIAL_135>",
|
139 |
+
"<SPECIAL_136>",
|
140 |
+
"<SPECIAL_137>",
|
141 |
+
"<SPECIAL_138>",
|
142 |
+
"<SPECIAL_139>",
|
143 |
+
"<SPECIAL_140>",
|
144 |
+
"<SPECIAL_141>",
|
145 |
+
"<SPECIAL_142>",
|
146 |
+
"<SPECIAL_143>",
|
147 |
+
"<SPECIAL_144>",
|
148 |
+
"<SPECIAL_145>",
|
149 |
+
"<SPECIAL_146>",
|
150 |
+
"<SPECIAL_147>",
|
151 |
+
"<SPECIAL_148>",
|
152 |
+
"<SPECIAL_149>",
|
153 |
+
"<SPECIAL_150>",
|
154 |
+
"<SPECIAL_151>",
|
155 |
+
"<SPECIAL_152>",
|
156 |
+
"<SPECIAL_153>",
|
157 |
+
"<SPECIAL_154>",
|
158 |
+
"<SPECIAL_155>",
|
159 |
+
"<SPECIAL_156>",
|
160 |
+
"<SPECIAL_157>",
|
161 |
+
"<SPECIAL_158>",
|
162 |
+
"<SPECIAL_159>",
|
163 |
+
"<SPECIAL_160>",
|
164 |
+
"<SPECIAL_161>",
|
165 |
+
"<SPECIAL_162>",
|
166 |
+
"<SPECIAL_163>",
|
167 |
+
"<SPECIAL_164>",
|
168 |
+
"<SPECIAL_165>",
|
169 |
+
"<SPECIAL_166>",
|
170 |
+
"<SPECIAL_167>",
|
171 |
+
"<SPECIAL_168>",
|
172 |
+
"<SPECIAL_169>",
|
173 |
+
"<SPECIAL_170>",
|
174 |
+
"<SPECIAL_171>",
|
175 |
+
"<SPECIAL_172>",
|
176 |
+
"<SPECIAL_173>",
|
177 |
+
"<SPECIAL_174>",
|
178 |
+
"<SPECIAL_175>",
|
179 |
+
"<SPECIAL_176>",
|
180 |
+
"<SPECIAL_177>",
|
181 |
+
"<SPECIAL_178>",
|
182 |
+
"<SPECIAL_179>",
|
183 |
+
"<SPECIAL_180>",
|
184 |
+
"<SPECIAL_181>",
|
185 |
+
"<SPECIAL_182>",
|
186 |
+
"<SPECIAL_183>",
|
187 |
+
"<SPECIAL_184>",
|
188 |
+
"<SPECIAL_185>",
|
189 |
+
"<SPECIAL_186>",
|
190 |
+
"<SPECIAL_187>",
|
191 |
+
"<SPECIAL_188>",
|
192 |
+
"<SPECIAL_189>",
|
193 |
+
"<SPECIAL_190>",
|
194 |
+
"<SPECIAL_191>",
|
195 |
+
"<SPECIAL_192>",
|
196 |
+
"<SPECIAL_193>",
|
197 |
+
"<SPECIAL_194>",
|
198 |
+
"<SPECIAL_195>",
|
199 |
+
"<SPECIAL_196>",
|
200 |
+
"<SPECIAL_197>",
|
201 |
+
"<SPECIAL_198>",
|
202 |
+
"<SPECIAL_199>",
|
203 |
+
"<SPECIAL_200>",
|
204 |
+
"<SPECIAL_201>",
|
205 |
+
"<SPECIAL_202>",
|
206 |
+
"<SPECIAL_203>",
|
207 |
+
"<SPECIAL_204>",
|
208 |
+
"<SPECIAL_205>",
|
209 |
+
"<SPECIAL_206>",
|
210 |
+
"<SPECIAL_207>",
|
211 |
+
"<SPECIAL_208>",
|
212 |
+
"<SPECIAL_209>",
|
213 |
+
"<SPECIAL_210>",
|
214 |
+
"<SPECIAL_211>",
|
215 |
+
"<SPECIAL_212>",
|
216 |
+
"<SPECIAL_213>",
|
217 |
+
"<SPECIAL_214>",
|
218 |
+
"<SPECIAL_215>",
|
219 |
+
"<SPECIAL_216>",
|
220 |
+
"<SPECIAL_217>",
|
221 |
+
"<SPECIAL_218>",
|
222 |
+
"<SPECIAL_219>",
|
223 |
+
"<SPECIAL_220>",
|
224 |
+
"<SPECIAL_221>",
|
225 |
+
"<SPECIAL_222>",
|
226 |
+
"<SPECIAL_223>",
|
227 |
+
"<SPECIAL_224>",
|
228 |
+
"<SPECIAL_225>",
|
229 |
+
"<SPECIAL_226>",
|
230 |
+
"<SPECIAL_227>",
|
231 |
+
"<SPECIAL_228>",
|
232 |
+
"<SPECIAL_229>",
|
233 |
+
"<SPECIAL_230>",
|
234 |
+
"<SPECIAL_231>",
|
235 |
+
"<SPECIAL_232>",
|
236 |
+
"<SPECIAL_233>",
|
237 |
+
"<SPECIAL_234>",
|
238 |
+
"<SPECIAL_235>",
|
239 |
+
"<SPECIAL_236>",
|
240 |
+
"<SPECIAL_237>",
|
241 |
+
"<SPECIAL_238>",
|
242 |
+
"<SPECIAL_239>",
|
243 |
+
"<SPECIAL_240>",
|
244 |
+
"<SPECIAL_241>",
|
245 |
+
"<SPECIAL_242>",
|
246 |
+
"<SPECIAL_243>",
|
247 |
+
"<SPECIAL_244>",
|
248 |
+
"<SPECIAL_245>",
|
249 |
+
"<SPECIAL_246>",
|
250 |
+
"<SPECIAL_247>",
|
251 |
+
"<SPECIAL_248>",
|
252 |
+
"<SPECIAL_249>",
|
253 |
+
"<SPECIAL_250>",
|
254 |
+
"<SPECIAL_251>",
|
255 |
+
"<SPECIAL_252>",
|
256 |
+
"<SPECIAL_253>",
|
257 |
+
"<SPECIAL_254>",
|
258 |
+
"<SPECIAL_255>",
|
259 |
+
"<SPECIAL_256>",
|
260 |
+
"<SPECIAL_257>",
|
261 |
+
"<SPECIAL_258>",
|
262 |
+
"<SPECIAL_259>",
|
263 |
+
"<SPECIAL_260>",
|
264 |
+
"<SPECIAL_261>",
|
265 |
+
"<SPECIAL_262>",
|
266 |
+
"<SPECIAL_263>",
|
267 |
+
"<SPECIAL_264>",
|
268 |
+
"<SPECIAL_265>",
|
269 |
+
"<SPECIAL_266>",
|
270 |
+
"<SPECIAL_267>",
|
271 |
+
"<SPECIAL_268>",
|
272 |
+
"<SPECIAL_269>",
|
273 |
+
"<SPECIAL_270>",
|
274 |
+
"<SPECIAL_271>",
|
275 |
+
"<SPECIAL_272>",
|
276 |
+
"<SPECIAL_273>",
|
277 |
+
"<SPECIAL_274>",
|
278 |
+
"<SPECIAL_275>",
|
279 |
+
"<SPECIAL_276>",
|
280 |
+
"<SPECIAL_277>",
|
281 |
+
"<SPECIAL_278>",
|
282 |
+
"<SPECIAL_279>",
|
283 |
+
"<SPECIAL_280>",
|
284 |
+
"<SPECIAL_281>",
|
285 |
+
"<SPECIAL_282>",
|
286 |
+
"<SPECIAL_283>",
|
287 |
+
"<SPECIAL_284>",
|
288 |
+
"<SPECIAL_285>",
|
289 |
+
"<SPECIAL_286>",
|
290 |
+
"<SPECIAL_287>",
|
291 |
+
"<SPECIAL_288>",
|
292 |
+
"<SPECIAL_289>",
|
293 |
+
"<SPECIAL_290>",
|
294 |
+
"<SPECIAL_291>",
|
295 |
+
"<SPECIAL_292>",
|
296 |
+
"<SPECIAL_293>",
|
297 |
+
"<SPECIAL_294>",
|
298 |
+
"<SPECIAL_295>",
|
299 |
+
"<SPECIAL_296>",
|
300 |
+
"<SPECIAL_297>",
|
301 |
+
"<SPECIAL_298>",
|
302 |
+
"<SPECIAL_299>",
|
303 |
+
"<SPECIAL_300>",
|
304 |
+
"<SPECIAL_301>",
|
305 |
+
"<SPECIAL_302>",
|
306 |
+
"<SPECIAL_303>",
|
307 |
+
"<SPECIAL_304>",
|
308 |
+
"<SPECIAL_305>",
|
309 |
+
"<SPECIAL_306>",
|
310 |
+
"<SPECIAL_307>",
|
311 |
+
"<SPECIAL_308>",
|
312 |
+
"<SPECIAL_309>",
|
313 |
+
"<SPECIAL_310>",
|
314 |
+
"<SPECIAL_311>",
|
315 |
+
"<SPECIAL_312>",
|
316 |
+
"<SPECIAL_313>",
|
317 |
+
"<SPECIAL_314>",
|
318 |
+
"<SPECIAL_315>",
|
319 |
+
"<SPECIAL_316>",
|
320 |
+
"<SPECIAL_317>",
|
321 |
+
"<SPECIAL_318>",
|
322 |
+
"<SPECIAL_319>",
|
323 |
+
"<SPECIAL_320>",
|
324 |
+
"<SPECIAL_321>",
|
325 |
+
"<SPECIAL_322>",
|
326 |
+
"<SPECIAL_323>",
|
327 |
+
"<SPECIAL_324>",
|
328 |
+
"<SPECIAL_325>",
|
329 |
+
"<SPECIAL_326>",
|
330 |
+
"<SPECIAL_327>",
|
331 |
+
"<SPECIAL_328>",
|
332 |
+
"<SPECIAL_329>",
|
333 |
+
"<SPECIAL_330>",
|
334 |
+
"<SPECIAL_331>",
|
335 |
+
"<SPECIAL_332>",
|
336 |
+
"<SPECIAL_333>",
|
337 |
+
"<SPECIAL_334>",
|
338 |
+
"<SPECIAL_335>",
|
339 |
+
"<SPECIAL_336>",
|
340 |
+
"<SPECIAL_337>",
|
341 |
+
"<SPECIAL_338>",
|
342 |
+
"<SPECIAL_339>",
|
343 |
+
"<SPECIAL_340>",
|
344 |
+
"<SPECIAL_341>",
|
345 |
+
"<SPECIAL_342>",
|
346 |
+
"<SPECIAL_343>",
|
347 |
+
"<SPECIAL_344>",
|
348 |
+
"<SPECIAL_345>",
|
349 |
+
"<SPECIAL_346>",
|
350 |
+
"<SPECIAL_347>",
|
351 |
+
"<SPECIAL_348>",
|
352 |
+
"<SPECIAL_349>",
|
353 |
+
"<SPECIAL_350>",
|
354 |
+
"<SPECIAL_351>",
|
355 |
+
"<SPECIAL_352>",
|
356 |
+
"<SPECIAL_353>",
|
357 |
+
"<SPECIAL_354>",
|
358 |
+
"<SPECIAL_355>",
|
359 |
+
"<SPECIAL_356>",
|
360 |
+
"<SPECIAL_357>",
|
361 |
+
"<SPECIAL_358>",
|
362 |
+
"<SPECIAL_359>",
|
363 |
+
"<SPECIAL_360>",
|
364 |
+
"<SPECIAL_361>",
|
365 |
+
"<SPECIAL_362>",
|
366 |
+
"<SPECIAL_363>",
|
367 |
+
"<SPECIAL_364>",
|
368 |
+
"<SPECIAL_365>",
|
369 |
+
"<SPECIAL_366>",
|
370 |
+
"<SPECIAL_367>",
|
371 |
+
"<SPECIAL_368>",
|
372 |
+
"<SPECIAL_369>",
|
373 |
+
"<SPECIAL_370>",
|
374 |
+
"<SPECIAL_371>",
|
375 |
+
"<SPECIAL_372>",
|
376 |
+
"<SPECIAL_373>",
|
377 |
+
"<SPECIAL_374>",
|
378 |
+
"<SPECIAL_375>",
|
379 |
+
"<SPECIAL_376>",
|
380 |
+
"<SPECIAL_377>",
|
381 |
+
"<SPECIAL_378>",
|
382 |
+
"<SPECIAL_379>",
|
383 |
+
"<SPECIAL_380>",
|
384 |
+
"<SPECIAL_381>",
|
385 |
+
"<SPECIAL_382>",
|
386 |
+
"<SPECIAL_383>",
|
387 |
+
"<SPECIAL_384>",
|
388 |
+
"<SPECIAL_385>",
|
389 |
+
"<SPECIAL_386>",
|
390 |
+
"<SPECIAL_387>",
|
391 |
+
"<SPECIAL_388>",
|
392 |
+
"<SPECIAL_389>",
|
393 |
+
"<SPECIAL_390>",
|
394 |
+
"<SPECIAL_391>",
|
395 |
+
"<SPECIAL_392>",
|
396 |
+
"<SPECIAL_393>",
|
397 |
+
"<SPECIAL_394>",
|
398 |
+
"<SPECIAL_395>",
|
399 |
+
"<SPECIAL_396>",
|
400 |
+
"<SPECIAL_397>",
|
401 |
+
"<SPECIAL_398>",
|
402 |
+
"<SPECIAL_399>",
|
403 |
+
"<SPECIAL_400>",
|
404 |
+
"<SPECIAL_401>",
|
405 |
+
"<SPECIAL_402>",
|
406 |
+
"<SPECIAL_403>",
|
407 |
+
"<SPECIAL_404>",
|
408 |
+
"<SPECIAL_405>",
|
409 |
+
"<SPECIAL_406>",
|
410 |
+
"<SPECIAL_407>",
|
411 |
+
"<SPECIAL_408>",
|
412 |
+
"<SPECIAL_409>",
|
413 |
+
"<SPECIAL_410>",
|
414 |
+
"<SPECIAL_411>",
|
415 |
+
"<SPECIAL_412>",
|
416 |
+
"<SPECIAL_413>",
|
417 |
+
"<SPECIAL_414>",
|
418 |
+
"<SPECIAL_415>",
|
419 |
+
"<SPECIAL_416>",
|
420 |
+
"<SPECIAL_417>",
|
421 |
+
"<SPECIAL_418>",
|
422 |
+
"<SPECIAL_419>",
|
423 |
+
"<SPECIAL_420>",
|
424 |
+
"<SPECIAL_421>",
|
425 |
+
"<SPECIAL_422>",
|
426 |
+
"<SPECIAL_423>",
|
427 |
+
"<SPECIAL_424>",
|
428 |
+
"<SPECIAL_425>",
|
429 |
+
"<SPECIAL_426>",
|
430 |
+
"<SPECIAL_427>",
|
431 |
+
"<SPECIAL_428>",
|
432 |
+
"<SPECIAL_429>",
|
433 |
+
"<SPECIAL_430>",
|
434 |
+
"<SPECIAL_431>",
|
435 |
+
"<SPECIAL_432>",
|
436 |
+
"<SPECIAL_433>",
|
437 |
+
"<SPECIAL_434>",
|
438 |
+
"<SPECIAL_435>",
|
439 |
+
"<SPECIAL_436>",
|
440 |
+
"<SPECIAL_437>",
|
441 |
+
"<SPECIAL_438>",
|
442 |
+
"<SPECIAL_439>",
|
443 |
+
"<SPECIAL_440>",
|
444 |
+
"<SPECIAL_441>",
|
445 |
+
"<SPECIAL_442>",
|
446 |
+
"<SPECIAL_443>",
|
447 |
+
"<SPECIAL_444>",
|
448 |
+
"<SPECIAL_445>",
|
449 |
+
"<SPECIAL_446>",
|
450 |
+
"<SPECIAL_447>",
|
451 |
+
"<SPECIAL_448>",
|
452 |
+
"<SPECIAL_449>",
|
453 |
+
"<SPECIAL_450>",
|
454 |
+
"<SPECIAL_451>",
|
455 |
+
"<SPECIAL_452>",
|
456 |
+
"<SPECIAL_453>",
|
457 |
+
"<SPECIAL_454>",
|
458 |
+
"<SPECIAL_455>",
|
459 |
+
"<SPECIAL_456>",
|
460 |
+
"<SPECIAL_457>",
|
461 |
+
"<SPECIAL_458>",
|
462 |
+
"<SPECIAL_459>",
|
463 |
+
"<SPECIAL_460>",
|
464 |
+
"<SPECIAL_461>",
|
465 |
+
"<SPECIAL_462>",
|
466 |
+
"<SPECIAL_463>",
|
467 |
+
"<SPECIAL_464>",
|
468 |
+
"<SPECIAL_465>",
|
469 |
+
"<SPECIAL_466>",
|
470 |
+
"<SPECIAL_467>",
|
471 |
+
"<SPECIAL_468>",
|
472 |
+
"<SPECIAL_469>",
|
473 |
+
"<SPECIAL_470>",
|
474 |
+
"<SPECIAL_471>",
|
475 |
+
"<SPECIAL_472>",
|
476 |
+
"<SPECIAL_473>",
|
477 |
+
"<SPECIAL_474>",
|
478 |
+
"<SPECIAL_475>",
|
479 |
+
"<SPECIAL_476>",
|
480 |
+
"<SPECIAL_477>",
|
481 |
+
"<SPECIAL_478>",
|
482 |
+
"<SPECIAL_479>",
|
483 |
+
"<SPECIAL_480>",
|
484 |
+
"<SPECIAL_481>",
|
485 |
+
"<SPECIAL_482>",
|
486 |
+
"<SPECIAL_483>",
|
487 |
+
"<SPECIAL_484>",
|
488 |
+
"<SPECIAL_485>",
|
489 |
+
"<SPECIAL_486>",
|
490 |
+
"<SPECIAL_487>",
|
491 |
+
"<SPECIAL_488>",
|
492 |
+
"<SPECIAL_489>",
|
493 |
+
"<SPECIAL_490>",
|
494 |
+
"<SPECIAL_491>",
|
495 |
+
"<SPECIAL_492>",
|
496 |
+
"<SPECIAL_493>",
|
497 |
+
"<SPECIAL_494>",
|
498 |
+
"<SPECIAL_495>",
|
499 |
+
"<SPECIAL_496>",
|
500 |
+
"<SPECIAL_497>",
|
501 |
+
"<SPECIAL_498>",
|
502 |
+
"<SPECIAL_499>",
|
503 |
+
"<SPECIAL_500>",
|
504 |
+
"<SPECIAL_501>",
|
505 |
+
"<SPECIAL_502>",
|
506 |
+
"<SPECIAL_503>",
|
507 |
+
"<SPECIAL_504>",
|
508 |
+
"<SPECIAL_505>",
|
509 |
+
"<SPECIAL_506>",
|
510 |
+
"<SPECIAL_507>",
|
511 |
+
"<SPECIAL_508>",
|
512 |
+
"<SPECIAL_509>",
|
513 |
+
"<SPECIAL_510>",
|
514 |
+
"<SPECIAL_511>",
|
515 |
+
"<SPECIAL_512>",
|
516 |
+
"<SPECIAL_513>",
|
517 |
+
"<SPECIAL_514>",
|
518 |
+
"<SPECIAL_515>",
|
519 |
+
"<SPECIAL_516>",
|
520 |
+
"<SPECIAL_517>",
|
521 |
+
"<SPECIAL_518>",
|
522 |
+
"<SPECIAL_519>",
|
523 |
+
"<SPECIAL_520>",
|
524 |
+
"<SPECIAL_521>",
|
525 |
+
"<SPECIAL_522>",
|
526 |
+
"<SPECIAL_523>",
|
527 |
+
"<SPECIAL_524>",
|
528 |
+
"<SPECIAL_525>",
|
529 |
+
"<SPECIAL_526>",
|
530 |
+
"<SPECIAL_527>",
|
531 |
+
"<SPECIAL_528>",
|
532 |
+
"<SPECIAL_529>",
|
533 |
+
"<SPECIAL_530>",
|
534 |
+
"<SPECIAL_531>",
|
535 |
+
"<SPECIAL_532>",
|
536 |
+
"<SPECIAL_533>",
|
537 |
+
"<SPECIAL_534>",
|
538 |
+
"<SPECIAL_535>",
|
539 |
+
"<SPECIAL_536>",
|
540 |
+
"<SPECIAL_537>",
|
541 |
+
"<SPECIAL_538>",
|
542 |
+
"<SPECIAL_539>",
|
543 |
+
"<SPECIAL_540>",
|
544 |
+
"<SPECIAL_541>",
|
545 |
+
"<SPECIAL_542>",
|
546 |
+
"<SPECIAL_543>",
|
547 |
+
"<SPECIAL_544>",
|
548 |
+
"<SPECIAL_545>",
|
549 |
+
"<SPECIAL_546>",
|
550 |
+
"<SPECIAL_547>",
|
551 |
+
"<SPECIAL_548>",
|
552 |
+
"<SPECIAL_549>",
|
553 |
+
"<SPECIAL_550>",
|
554 |
+
"<SPECIAL_551>",
|
555 |
+
"<SPECIAL_552>",
|
556 |
+
"<SPECIAL_553>",
|
557 |
+
"<SPECIAL_554>",
|
558 |
+
"<SPECIAL_555>",
|
559 |
+
"<SPECIAL_556>",
|
560 |
+
"<SPECIAL_557>",
|
561 |
+
"<SPECIAL_558>",
|
562 |
+
"<SPECIAL_559>",
|
563 |
+
"<SPECIAL_560>",
|
564 |
+
"<SPECIAL_561>",
|
565 |
+
"<SPECIAL_562>",
|
566 |
+
"<SPECIAL_563>",
|
567 |
+
"<SPECIAL_564>",
|
568 |
+
"<SPECIAL_565>",
|
569 |
+
"<SPECIAL_566>",
|
570 |
+
"<SPECIAL_567>",
|
571 |
+
"<SPECIAL_568>",
|
572 |
+
"<SPECIAL_569>",
|
573 |
+
"<SPECIAL_570>",
|
574 |
+
"<SPECIAL_571>",
|
575 |
+
"<SPECIAL_572>",
|
576 |
+
"<SPECIAL_573>",
|
577 |
+
"<SPECIAL_574>",
|
578 |
+
"<SPECIAL_575>",
|
579 |
+
"<SPECIAL_576>",
|
580 |
+
"<SPECIAL_577>",
|
581 |
+
"<SPECIAL_578>",
|
582 |
+
"<SPECIAL_579>",
|
583 |
+
"<SPECIAL_580>",
|
584 |
+
"<SPECIAL_581>",
|
585 |
+
"<SPECIAL_582>",
|
586 |
+
"<SPECIAL_583>",
|
587 |
+
"<SPECIAL_584>",
|
588 |
+
"<SPECIAL_585>",
|
589 |
+
"<SPECIAL_586>",
|
590 |
+
"<SPECIAL_587>",
|
591 |
+
"<SPECIAL_588>",
|
592 |
+
"<SPECIAL_589>",
|
593 |
+
"<SPECIAL_590>",
|
594 |
+
"<SPECIAL_591>",
|
595 |
+
"<SPECIAL_592>",
|
596 |
+
"<SPECIAL_593>",
|
597 |
+
"<SPECIAL_594>",
|
598 |
+
"<SPECIAL_595>",
|
599 |
+
"<SPECIAL_596>",
|
600 |
+
"<SPECIAL_597>",
|
601 |
+
"<SPECIAL_598>",
|
602 |
+
"<SPECIAL_599>",
|
603 |
+
"<SPECIAL_600>",
|
604 |
+
"<SPECIAL_601>",
|
605 |
+
"<SPECIAL_602>",
|
606 |
+
"<SPECIAL_603>",
|
607 |
+
"<SPECIAL_604>",
|
608 |
+
"<SPECIAL_605>",
|
609 |
+
"<SPECIAL_606>",
|
610 |
+
"<SPECIAL_607>",
|
611 |
+
"<SPECIAL_608>",
|
612 |
+
"<SPECIAL_609>",
|
613 |
+
"<SPECIAL_610>",
|
614 |
+
"<SPECIAL_611>",
|
615 |
+
"<SPECIAL_612>",
|
616 |
+
"<SPECIAL_613>",
|
617 |
+
"<SPECIAL_614>",
|
618 |
+
"<SPECIAL_615>",
|
619 |
+
"<SPECIAL_616>",
|
620 |
+
"<SPECIAL_617>",
|
621 |
+
"<SPECIAL_618>",
|
622 |
+
"<SPECIAL_619>",
|
623 |
+
"<SPECIAL_620>",
|
624 |
+
"<SPECIAL_621>",
|
625 |
+
"<SPECIAL_622>",
|
626 |
+
"<SPECIAL_623>",
|
627 |
+
"<SPECIAL_624>",
|
628 |
+
"<SPECIAL_625>",
|
629 |
+
"<SPECIAL_626>",
|
630 |
+
"<SPECIAL_627>",
|
631 |
+
"<SPECIAL_628>",
|
632 |
+
"<SPECIAL_629>",
|
633 |
+
"<SPECIAL_630>",
|
634 |
+
"<SPECIAL_631>",
|
635 |
+
"<SPECIAL_632>",
|
636 |
+
"<SPECIAL_633>",
|
637 |
+
"<SPECIAL_634>",
|
638 |
+
"<SPECIAL_635>",
|
639 |
+
"<SPECIAL_636>",
|
640 |
+
"<SPECIAL_637>",
|
641 |
+
"<SPECIAL_638>",
|
642 |
+
"<SPECIAL_639>",
|
643 |
+
"<SPECIAL_640>",
|
644 |
+
"<SPECIAL_641>",
|
645 |
+
"<SPECIAL_642>",
|
646 |
+
"<SPECIAL_643>",
|
647 |
+
"<SPECIAL_644>",
|
648 |
+
"<SPECIAL_645>",
|
649 |
+
"<SPECIAL_646>",
|
650 |
+
"<SPECIAL_647>",
|
651 |
+
"<SPECIAL_648>",
|
652 |
+
"<SPECIAL_649>",
|
653 |
+
"<SPECIAL_650>",
|
654 |
+
"<SPECIAL_651>",
|
655 |
+
"<SPECIAL_652>",
|
656 |
+
"<SPECIAL_653>",
|
657 |
+
"<SPECIAL_654>",
|
658 |
+
"<SPECIAL_655>",
|
659 |
+
"<SPECIAL_656>",
|
660 |
+
"<SPECIAL_657>",
|
661 |
+
"<SPECIAL_658>",
|
662 |
+
"<SPECIAL_659>",
|
663 |
+
"<SPECIAL_660>",
|
664 |
+
"<SPECIAL_661>",
|
665 |
+
"<SPECIAL_662>",
|
666 |
+
"<SPECIAL_663>",
|
667 |
+
"<SPECIAL_664>",
|
668 |
+
"<SPECIAL_665>",
|
669 |
+
"<SPECIAL_666>",
|
670 |
+
"<SPECIAL_667>",
|
671 |
+
"<SPECIAL_668>",
|
672 |
+
"<SPECIAL_669>",
|
673 |
+
"<SPECIAL_670>",
|
674 |
+
"<SPECIAL_671>",
|
675 |
+
"<SPECIAL_672>",
|
676 |
+
"<SPECIAL_673>",
|
677 |
+
"<SPECIAL_674>",
|
678 |
+
"<SPECIAL_675>",
|
679 |
+
"<SPECIAL_676>",
|
680 |
+
"<SPECIAL_677>",
|
681 |
+
"<SPECIAL_678>",
|
682 |
+
"<SPECIAL_679>",
|
683 |
+
"<SPECIAL_680>",
|
684 |
+
"<SPECIAL_681>",
|
685 |
+
"<SPECIAL_682>",
|
686 |
+
"<SPECIAL_683>",
|
687 |
+
"<SPECIAL_684>",
|
688 |
+
"<SPECIAL_685>",
|
689 |
+
"<SPECIAL_686>",
|
690 |
+
"<SPECIAL_687>",
|
691 |
+
"<SPECIAL_688>",
|
692 |
+
"<SPECIAL_689>",
|
693 |
+
"<SPECIAL_690>",
|
694 |
+
"<SPECIAL_691>",
|
695 |
+
"<SPECIAL_692>",
|
696 |
+
"<SPECIAL_693>",
|
697 |
+
"<SPECIAL_694>",
|
698 |
+
"<SPECIAL_695>",
|
699 |
+
"<SPECIAL_696>",
|
700 |
+
"<SPECIAL_697>",
|
701 |
+
"<SPECIAL_698>",
|
702 |
+
"<SPECIAL_699>",
|
703 |
+
"<SPECIAL_700>",
|
704 |
+
"<SPECIAL_701>",
|
705 |
+
"<SPECIAL_702>",
|
706 |
+
"<SPECIAL_703>",
|
707 |
+
"<SPECIAL_704>",
|
708 |
+
"<SPECIAL_705>",
|
709 |
+
"<SPECIAL_706>",
|
710 |
+
"<SPECIAL_707>",
|
711 |
+
"<SPECIAL_708>",
|
712 |
+
"<SPECIAL_709>",
|
713 |
+
"<SPECIAL_710>",
|
714 |
+
"<SPECIAL_711>",
|
715 |
+
"<SPECIAL_712>",
|
716 |
+
"<SPECIAL_713>",
|
717 |
+
"<SPECIAL_714>",
|
718 |
+
"<SPECIAL_715>",
|
719 |
+
"<SPECIAL_716>",
|
720 |
+
"<SPECIAL_717>",
|
721 |
+
"<SPECIAL_718>",
|
722 |
+
"<SPECIAL_719>",
|
723 |
+
"<SPECIAL_720>",
|
724 |
+
"<SPECIAL_721>",
|
725 |
+
"<SPECIAL_722>",
|
726 |
+
"<SPECIAL_723>",
|
727 |
+
"<SPECIAL_724>",
|
728 |
+
"<SPECIAL_725>",
|
729 |
+
"<SPECIAL_726>",
|
730 |
+
"<SPECIAL_727>",
|
731 |
+
"<SPECIAL_728>",
|
732 |
+
"<SPECIAL_729>",
|
733 |
+
"<SPECIAL_730>",
|
734 |
+
"<SPECIAL_731>",
|
735 |
+
"<SPECIAL_732>",
|
736 |
+
"<SPECIAL_733>",
|
737 |
+
"<SPECIAL_734>",
|
738 |
+
"<SPECIAL_735>",
|
739 |
+
"<SPECIAL_736>",
|
740 |
+
"<SPECIAL_737>",
|
741 |
+
"<SPECIAL_738>",
|
742 |
+
"<SPECIAL_739>",
|
743 |
+
"<SPECIAL_740>",
|
744 |
+
"<SPECIAL_741>",
|
745 |
+
"<SPECIAL_742>",
|
746 |
+
"<SPECIAL_743>",
|
747 |
+
"<SPECIAL_744>",
|
748 |
+
"<SPECIAL_745>",
|
749 |
+
"<SPECIAL_746>",
|
750 |
+
"<SPECIAL_747>",
|
751 |
+
"<SPECIAL_748>",
|
752 |
+
"<SPECIAL_749>",
|
753 |
+
"<SPECIAL_750>",
|
754 |
+
"<SPECIAL_751>",
|
755 |
+
"<SPECIAL_752>",
|
756 |
+
"<SPECIAL_753>",
|
757 |
+
"<SPECIAL_754>",
|
758 |
+
"<SPECIAL_755>",
|
759 |
+
"<SPECIAL_756>",
|
760 |
+
"<SPECIAL_757>",
|
761 |
+
"<SPECIAL_758>",
|
762 |
+
"<SPECIAL_759>",
|
763 |
+
"<SPECIAL_760>",
|
764 |
+
"<SPECIAL_761>",
|
765 |
+
"<SPECIAL_762>",
|
766 |
+
"<SPECIAL_763>",
|
767 |
+
"<SPECIAL_764>",
|
768 |
+
"<SPECIAL_765>",
|
769 |
+
"<SPECIAL_766>",
|
770 |
+
"<SPECIAL_767>",
|
771 |
+
"<SPECIAL_768>",
|
772 |
+
"<SPECIAL_769>",
|
773 |
+
"<SPECIAL_770>",
|
774 |
+
"<SPECIAL_771>",
|
775 |
+
"<SPECIAL_772>",
|
776 |
+
"<SPECIAL_773>",
|
777 |
+
"<SPECIAL_774>",
|
778 |
+
"<SPECIAL_775>",
|
779 |
+
"<SPECIAL_776>",
|
780 |
+
"<SPECIAL_777>",
|
781 |
+
"<SPECIAL_778>",
|
782 |
+
"<SPECIAL_779>",
|
783 |
+
"<SPECIAL_780>",
|
784 |
+
"<SPECIAL_781>",
|
785 |
+
"<SPECIAL_782>",
|
786 |
+
"<SPECIAL_783>",
|
787 |
+
"<SPECIAL_784>",
|
788 |
+
"<SPECIAL_785>",
|
789 |
+
"<SPECIAL_786>",
|
790 |
+
"<SPECIAL_787>",
|
791 |
+
"<SPECIAL_788>",
|
792 |
+
"<SPECIAL_789>",
|
793 |
+
"<SPECIAL_790>",
|
794 |
+
"<SPECIAL_791>",
|
795 |
+
"<SPECIAL_792>",
|
796 |
+
"<SPECIAL_793>",
|
797 |
+
"<SPECIAL_794>",
|
798 |
+
"<SPECIAL_795>",
|
799 |
+
"<SPECIAL_796>",
|
800 |
+
"<SPECIAL_797>",
|
801 |
+
"<SPECIAL_798>",
|
802 |
+
"<SPECIAL_799>",
|
803 |
+
"<SPECIAL_800>",
|
804 |
+
"<SPECIAL_801>",
|
805 |
+
"<SPECIAL_802>",
|
806 |
+
"<SPECIAL_803>",
|
807 |
+
"<SPECIAL_804>",
|
808 |
+
"<SPECIAL_805>",
|
809 |
+
"<SPECIAL_806>",
|
810 |
+
"<SPECIAL_807>",
|
811 |
+
"<SPECIAL_808>",
|
812 |
+
"<SPECIAL_809>",
|
813 |
+
"<SPECIAL_810>",
|
814 |
+
"<SPECIAL_811>",
|
815 |
+
"<SPECIAL_812>",
|
816 |
+
"<SPECIAL_813>",
|
817 |
+
"<SPECIAL_814>",
|
818 |
+
"<SPECIAL_815>",
|
819 |
+
"<SPECIAL_816>",
|
820 |
+
"<SPECIAL_817>",
|
821 |
+
"<SPECIAL_818>",
|
822 |
+
"<SPECIAL_819>",
|
823 |
+
"<SPECIAL_820>",
|
824 |
+
"<SPECIAL_821>",
|
825 |
+
"<SPECIAL_822>",
|
826 |
+
"<SPECIAL_823>",
|
827 |
+
"<SPECIAL_824>",
|
828 |
+
"<SPECIAL_825>",
|
829 |
+
"<SPECIAL_826>",
|
830 |
+
"<SPECIAL_827>",
|
831 |
+
"<SPECIAL_828>",
|
832 |
+
"<SPECIAL_829>",
|
833 |
+
"<SPECIAL_830>",
|
834 |
+
"<SPECIAL_831>",
|
835 |
+
"<SPECIAL_832>",
|
836 |
+
"<SPECIAL_833>",
|
837 |
+
"<SPECIAL_834>",
|
838 |
+
"<SPECIAL_835>",
|
839 |
+
"<SPECIAL_836>",
|
840 |
+
"<SPECIAL_837>",
|
841 |
+
"<SPECIAL_838>",
|
842 |
+
"<SPECIAL_839>",
|
843 |
+
"<SPECIAL_840>",
|
844 |
+
"<SPECIAL_841>",
|
845 |
+
"<SPECIAL_842>",
|
846 |
+
"<SPECIAL_843>",
|
847 |
+
"<SPECIAL_844>",
|
848 |
+
"<SPECIAL_845>",
|
849 |
+
"<SPECIAL_846>",
|
850 |
+
"<SPECIAL_847>",
|
851 |
+
"<SPECIAL_848>",
|
852 |
+
"<SPECIAL_849>",
|
853 |
+
"<SPECIAL_850>",
|
854 |
+
"<SPECIAL_851>",
|
855 |
+
"<SPECIAL_852>",
|
856 |
+
"<SPECIAL_853>",
|
857 |
+
"<SPECIAL_854>",
|
858 |
+
"<SPECIAL_855>",
|
859 |
+
"<SPECIAL_856>",
|
860 |
+
"<SPECIAL_857>",
|
861 |
+
"<SPECIAL_858>",
|
862 |
+
"<SPECIAL_859>",
|
863 |
+
"<SPECIAL_860>",
|
864 |
+
"<SPECIAL_861>",
|
865 |
+
"<SPECIAL_862>",
|
866 |
+
"<SPECIAL_863>",
|
867 |
+
"<SPECIAL_864>",
|
868 |
+
"<SPECIAL_865>",
|
869 |
+
"<SPECIAL_866>",
|
870 |
+
"<SPECIAL_867>",
|
871 |
+
"<SPECIAL_868>",
|
872 |
+
"<SPECIAL_869>",
|
873 |
+
"<SPECIAL_870>",
|
874 |
+
"<SPECIAL_871>",
|
875 |
+
"<SPECIAL_872>",
|
876 |
+
"<SPECIAL_873>",
|
877 |
+
"<SPECIAL_874>",
|
878 |
+
"<SPECIAL_875>",
|
879 |
+
"<SPECIAL_876>",
|
880 |
+
"<SPECIAL_877>",
|
881 |
+
"<SPECIAL_878>",
|
882 |
+
"<SPECIAL_879>",
|
883 |
+
"<SPECIAL_880>",
|
884 |
+
"<SPECIAL_881>",
|
885 |
+
"<SPECIAL_882>",
|
886 |
+
"<SPECIAL_883>",
|
887 |
+
"<SPECIAL_884>",
|
888 |
+
"<SPECIAL_885>",
|
889 |
+
"<SPECIAL_886>",
|
890 |
+
"<SPECIAL_887>",
|
891 |
+
"<SPECIAL_888>",
|
892 |
+
"<SPECIAL_889>",
|
893 |
+
"<SPECIAL_890>",
|
894 |
+
"<SPECIAL_891>",
|
895 |
+
"<SPECIAL_892>",
|
896 |
+
"<SPECIAL_893>",
|
897 |
+
"<SPECIAL_894>",
|
898 |
+
"<SPECIAL_895>",
|
899 |
+
"<SPECIAL_896>",
|
900 |
+
"<SPECIAL_897>",
|
901 |
+
"<SPECIAL_898>",
|
902 |
+
"<SPECIAL_899>",
|
903 |
+
"<SPECIAL_900>",
|
904 |
+
"<SPECIAL_901>",
|
905 |
+
"<SPECIAL_902>",
|
906 |
+
"<SPECIAL_903>",
|
907 |
+
"<SPECIAL_904>",
|
908 |
+
"<SPECIAL_905>",
|
909 |
+
"<SPECIAL_906>",
|
910 |
+
"<SPECIAL_907>",
|
911 |
+
"<SPECIAL_908>",
|
912 |
+
"<SPECIAL_909>",
|
913 |
+
"<SPECIAL_910>",
|
914 |
+
"<SPECIAL_911>",
|
915 |
+
"<SPECIAL_912>",
|
916 |
+
"<SPECIAL_913>",
|
917 |
+
"<SPECIAL_914>",
|
918 |
+
"<SPECIAL_915>",
|
919 |
+
"<SPECIAL_916>",
|
920 |
+
"<SPECIAL_917>",
|
921 |
+
"<SPECIAL_918>",
|
922 |
+
"<SPECIAL_919>",
|
923 |
+
"<SPECIAL_920>",
|
924 |
+
"<SPECIAL_921>",
|
925 |
+
"<SPECIAL_922>",
|
926 |
+
"<SPECIAL_923>",
|
927 |
+
"<SPECIAL_924>",
|
928 |
+
"<SPECIAL_925>",
|
929 |
+
"<SPECIAL_926>",
|
930 |
+
"<SPECIAL_927>",
|
931 |
+
"<SPECIAL_928>",
|
932 |
+
"<SPECIAL_929>",
|
933 |
+
"<SPECIAL_930>",
|
934 |
+
"<SPECIAL_931>",
|
935 |
+
"<SPECIAL_932>",
|
936 |
+
"<SPECIAL_933>",
|
937 |
+
"<SPECIAL_934>",
|
938 |
+
"<SPECIAL_935>",
|
939 |
+
"<SPECIAL_936>",
|
940 |
+
"<SPECIAL_937>",
|
941 |
+
"<SPECIAL_938>",
|
942 |
+
"<SPECIAL_939>",
|
943 |
+
"<SPECIAL_940>",
|
944 |
+
"<SPECIAL_941>",
|
945 |
+
"<SPECIAL_942>",
|
946 |
+
"<SPECIAL_943>",
|
947 |
+
"<SPECIAL_944>",
|
948 |
+
"<SPECIAL_945>",
|
949 |
+
"<SPECIAL_946>",
|
950 |
+
"<SPECIAL_947>",
|
951 |
+
"<SPECIAL_948>",
|
952 |
+
"<SPECIAL_949>",
|
953 |
+
"<SPECIAL_950>",
|
954 |
+
"<SPECIAL_951>",
|
955 |
+
"<SPECIAL_952>",
|
956 |
+
"<SPECIAL_953>",
|
957 |
+
"<SPECIAL_954>",
|
958 |
+
"<SPECIAL_955>",
|
959 |
+
"<SPECIAL_956>",
|
960 |
+
"<SPECIAL_957>",
|
961 |
+
"<SPECIAL_958>",
|
962 |
+
"<SPECIAL_959>",
|
963 |
+
"<SPECIAL_960>",
|
964 |
+
"<SPECIAL_961>",
|
965 |
+
"<SPECIAL_962>",
|
966 |
+
"<SPECIAL_963>",
|
967 |
+
"<SPECIAL_964>",
|
968 |
+
"<SPECIAL_965>",
|
969 |
+
"<SPECIAL_966>",
|
970 |
+
"<SPECIAL_967>",
|
971 |
+
"<SPECIAL_968>",
|
972 |
+
"<SPECIAL_969>",
|
973 |
+
"<SPECIAL_970>",
|
974 |
+
"<SPECIAL_971>",
|
975 |
+
"<SPECIAL_972>",
|
976 |
+
"<SPECIAL_973>",
|
977 |
+
"<SPECIAL_974>",
|
978 |
+
"<SPECIAL_975>",
|
979 |
+
"<SPECIAL_976>",
|
980 |
+
"<SPECIAL_977>",
|
981 |
+
"<SPECIAL_978>",
|
982 |
+
"<SPECIAL_979>",
|
983 |
+
"<SPECIAL_980>",
|
984 |
+
"<SPECIAL_981>",
|
985 |
+
"<SPECIAL_982>",
|
986 |
+
"<SPECIAL_983>",
|
987 |
+
"<SPECIAL_984>",
|
988 |
+
"<SPECIAL_985>",
|
989 |
+
"<SPECIAL_986>",
|
990 |
+
"<SPECIAL_987>",
|
991 |
+
"<SPECIAL_988>",
|
992 |
+
"<SPECIAL_989>",
|
993 |
+
"<SPECIAL_990>",
|
994 |
+
"<SPECIAL_991>",
|
995 |
+
"<SPECIAL_992>",
|
996 |
+
"<SPECIAL_993>",
|
997 |
+
"<SPECIAL_994>",
|
998 |
+
"<SPECIAL_995>",
|
999 |
+
"<SPECIAL_996>",
|
1000 |
+
"<SPECIAL_997>",
|
1001 |
+
"<SPECIAL_998>",
|
1002 |
+
"<SPECIAL_999>"
|
1003 |
+
],
|
1004 |
+
"bos_token": {
|
1005 |
+
"content": "<s>",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": false,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false
|
1010 |
+
},
|
1011 |
+
"eos_token": {
|
1012 |
+
"content": "</s>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false
|
1017 |
+
},
|
1018 |
+
"pad_token": {
|
1019 |
+
"content": "<pad>",
|
1020 |
+
"lstrip": false,
|
1021 |
+
"normalized": false,
|
1022 |
+
"rstrip": false,
|
1023 |
+
"single_word": false
|
1024 |
+
},
|
1025 |
+
"unk_token": {
|
1026 |
+
"content": "<unk>",
|
1027 |
+
"lstrip": false,
|
1028 |
+
"normalized": false,
|
1029 |
+
"rstrip": false,
|
1030 |
+
"single_word": false
|
1031 |
+
}
|
1032 |
+
}
|
Mistral-Small-24B-3.1/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac9783353ab8f26d0949ac570b4cb747d520b8b638d7fb37d525fd382b21868e
|
3 |
+
size 17078136
|
Mistral-Small-24B-3.1/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-GPTQ/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Phi-4-GPTQ/README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- microsoft/phi-4
|
7 |
+
---
|
8 |
+
# Model Card for Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit
|
9 |
+
|
10 |
+
## Model Overview
|
11 |
+
|
12 |
+
**Model Name**: Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit
|
13 |
+
**Model Type**: Instruction-tuned, Quantized GPT-4-based language model
|
14 |
+
**Quantization**: GPTQ 4-bit
|
15 |
+
**Author**: Satwik11
|
16 |
+
**Hosted on**: Hugging Face
|
17 |
+
|
18 |
+
## Description
|
19 |
+
|
20 |
+
This model is a quantized version of the Microsoft phi-4 Instruct model, designed to deliver high performance while maintaining computational efficiency. By leveraging the GPTQ 4-bit quantization method, it enables deployment in environments with limited resources while retaining a high degree of accuracy.
|
21 |
+
|
22 |
+
The model is fine-tuned for instruction-following tasks, making it ideal for applications in conversational AI, question answering, and general-purpose text generation.
|
23 |
+
|
24 |
+
## Key Features
|
25 |
+
|
26 |
+
- **Instruction-tuned**: Fine-tuned to follow human-like instructions effectively.
|
27 |
+
- **Quantized for Efficiency**: Uses GPTQ 4-bit quantization to reduce memory requirements and inference latency.
|
28 |
+
- **Pre-trained Base**: Built on the Microsoft phi-4 framework, ensuring state-of-the-art performance on NLP tasks.
|
29 |
+
|
30 |
+
## Use Cases
|
31 |
+
|
32 |
+
- Chatbots and virtual assistants.
|
33 |
+
- Summarization and content generation.
|
34 |
+
- Research and educational applications.
|
35 |
+
- Semantic search and knowledge retrieval.
|
36 |
+
|
37 |
+
## Model Details
|
38 |
+
|
39 |
+
### Architecture
|
40 |
+
|
41 |
+
- **Base Model**: Microsoft phi-4
|
42 |
+
- **Quantization Technique**: GPTQ (4-bit)
|
43 |
+
- **Language**: English
|
44 |
+
- **Training Objective**: Instruction-following fine-tuning
|
Phi-4-GPTQ/config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/phi-4",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {},
|
9 |
+
"bos_token_id": 100257,
|
10 |
+
"embd_pdrop": 0.0,
|
11 |
+
"eos_token_id": 100257,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 5120,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 17920,
|
16 |
+
"max_position_embeddings": 16384,
|
17 |
+
"model_type": "phi3",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 10,
|
21 |
+
"original_max_position_embeddings": 16384,
|
22 |
+
"pad_token_id": 100257,
|
23 |
+
"quantization_config": {
|
24 |
+
"amp": true,
|
25 |
+
"autoround_version": "0.4.4",
|
26 |
+
"batch_size": 8,
|
27 |
+
"bits": 4,
|
28 |
+
"damp_percent": 0.01,
|
29 |
+
"data_type": "int",
|
30 |
+
"desc_act": false,
|
31 |
+
"enable_minmax_tuning": true,
|
32 |
+
"enable_norm_bias_tuning": false,
|
33 |
+
"enable_quanted_input": true,
|
34 |
+
"gradient_accumulate_steps": 1,
|
35 |
+
"group_size": 128,
|
36 |
+
"iters": 256,
|
37 |
+
"low_gpu_mem_usage": false,
|
38 |
+
"lr": 0.00390625,
|
39 |
+
"minmax_lr": 0.00390625,
|
40 |
+
"nsamples": 128,
|
41 |
+
"quant_method": "gptq",
|
42 |
+
"scale_dtype": "torch.float16",
|
43 |
+
"seqlen": 2048,
|
44 |
+
"sym": true,
|
45 |
+
"to_quant_block_names": null,
|
46 |
+
"true_sequential": false
|
47 |
+
},
|
48 |
+
"resid_pdrop": 0.0,
|
49 |
+
"rms_norm_eps": 1e-05,
|
50 |
+
"rope_scaling": null,
|
51 |
+
"rope_theta": 250000,
|
52 |
+
"sliding_window": null,
|
53 |
+
"tie_word_embeddings": false,
|
54 |
+
"torch_dtype": "bfloat16",
|
55 |
+
"transformers_version": "4.47.1",
|
56 |
+
"use_cache": true,
|
57 |
+
"vocab_size": 100352
|
58 |
+
}
|
Phi-4-GPTQ/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100257,
|
4 |
+
"eos_token_id": [
|
5 |
+
100257,
|
6 |
+
100265
|
7 |
+
],
|
8 |
+
"transformers_version": "4.47.1"
|
9 |
+
}
|
Phi-4-GPTQ/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-GPTQ/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:609fb22f6b382707a5ada5ce16351612c581aafac62ed0e7fbb7900b5bd47c7d
|
3 |
+
size 4960209984
|
Phi-4-GPTQ/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72eb5170c5effca559be040bde2ee2124a4a796af7c1ee2beba530d1bfdde1fc
|
3 |
+
size 4183219664
|
Phi-4-GPTQ/model.safetensors.index.json
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9143347200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.0.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.0.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.1.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.1.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.1.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.1.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.1.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.10.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.10.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.10.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.10.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.10.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.10.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.10.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.10.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.10.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.10.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.10.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.10.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.10.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.10.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.10.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.11.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.11.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.11.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.11.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.11.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.11.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.11.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.11.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.11.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.11.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.11.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.11.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.11.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.11.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.11.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.11.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.12.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.12.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.12.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.12.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.12.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.12.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.12.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.12.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.12.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.12.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.12.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.12.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.12.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.12.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.12.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.12.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.13.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.13.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.13.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.13.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.13.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.13.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.13.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.13.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.13.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.13.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.13.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.13.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.13.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.13.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.13.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.13.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.14.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.14.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.14.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.14.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.14.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.14.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.14.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.14.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.14.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.14.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.14.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.14.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.14.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.14.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.14.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.14.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.15.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.15.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.15.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.15.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.15.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.15.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.15.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.15.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.15.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.15.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.15.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.15.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.15.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.15.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.15.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.15.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.16.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.16.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.16.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.16.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.16.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.16.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.16.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.16.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.16.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.16.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.16.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.16.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.16.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.16.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.16.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.16.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.17.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.17.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.17.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.17.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.17.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.17.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.17.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.17.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.17.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.17.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.17.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.17.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.17.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.17.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.17.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.17.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.18.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.18.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.18.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.18.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.18.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.18.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.18.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.18.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.18.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.18.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.18.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.18.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.18.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.18.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.18.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.18.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.19.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.19.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.19.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.19.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.19.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.19.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.19.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.19.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.19.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.19.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.19.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.19.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.19.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.19.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.19.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.19.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.2.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.2.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.2.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.2.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.2.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.2.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.2.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.2.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.2.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.2.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.2.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.2.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.2.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.2.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.2.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.2.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.20.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.20.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.20.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.20.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.20.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.20.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.20.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.20.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.20.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.20.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.20.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.20.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.20.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.20.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.20.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.20.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.21.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.21.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.21.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.21.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.21.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.21.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.21.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.21.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.21.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.21.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.21.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.21.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.21.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.21.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.21.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.21.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.22.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.22.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.22.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.22.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.22.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.22.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.22.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.22.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.22.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.22.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.22.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.22.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.22.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.22.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.22.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.22.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.23.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.23.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.23.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.23.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.23.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.23.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.23.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.23.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.23.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.23.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.23.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.23.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.23.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.23.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.23.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.23.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.24.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.24.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.24.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.24.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.24.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.24.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.24.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.24.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.24.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.24.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.24.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.24.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.24.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.24.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.24.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.24.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.25.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.25.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.25.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.25.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.25.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.25.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.25.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.25.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.25.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.25.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.25.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.25.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.25.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.25.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.25.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.25.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.26.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.26.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.26.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.26.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.26.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.26.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.26.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.26.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.26.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.26.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.26.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.26.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.26.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.26.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.26.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.26.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.27.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.27.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.27.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
372 |
+
"model.layers.27.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
373 |
+
"model.layers.27.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
374 |
+
"model.layers.27.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
375 |
+
"model.layers.27.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
376 |
+
"model.layers.27.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
377 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
378 |
+
"model.layers.27.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
379 |
+
"model.layers.27.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
380 |
+
"model.layers.27.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
381 |
+
"model.layers.27.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
382 |
+
"model.layers.27.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
383 |
+
"model.layers.27.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
384 |
+
"model.layers.27.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
385 |
+
"model.layers.27.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
386 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
387 |
+
"model.layers.28.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
388 |
+
"model.layers.28.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
389 |
+
"model.layers.28.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
390 |
+
"model.layers.28.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
391 |
+
"model.layers.28.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
392 |
+
"model.layers.28.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
393 |
+
"model.layers.28.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
394 |
+
"model.layers.28.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
395 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
396 |
+
"model.layers.28.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
397 |
+
"model.layers.28.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
398 |
+
"model.layers.28.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
399 |
+
"model.layers.28.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
400 |
+
"model.layers.28.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
401 |
+
"model.layers.28.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
402 |
+
"model.layers.28.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
403 |
+
"model.layers.28.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
404 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
405 |
+
"model.layers.29.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
406 |
+
"model.layers.29.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
407 |
+
"model.layers.29.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
408 |
+
"model.layers.29.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
409 |
+
"model.layers.29.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
410 |
+
"model.layers.29.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
411 |
+
"model.layers.29.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
412 |
+
"model.layers.29.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
413 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
414 |
+
"model.layers.29.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
415 |
+
"model.layers.29.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
416 |
+
"model.layers.29.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
417 |
+
"model.layers.29.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
418 |
+
"model.layers.29.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
419 |
+
"model.layers.29.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
420 |
+
"model.layers.29.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
421 |
+
"model.layers.29.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
422 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.3.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.3.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.3.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.3.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.3.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.3.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.3.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.3.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.3.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.3.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.3.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.3.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.3.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.3.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.3.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.3.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
441 |
+
"model.layers.30.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
442 |
+
"model.layers.30.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
443 |
+
"model.layers.30.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
444 |
+
"model.layers.30.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
445 |
+
"model.layers.30.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
446 |
+
"model.layers.30.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
447 |
+
"model.layers.30.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
448 |
+
"model.layers.30.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
449 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
450 |
+
"model.layers.30.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
451 |
+
"model.layers.30.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
452 |
+
"model.layers.30.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
453 |
+
"model.layers.30.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
454 |
+
"model.layers.30.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
455 |
+
"model.layers.30.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
456 |
+
"model.layers.30.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
457 |
+
"model.layers.30.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
458 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
459 |
+
"model.layers.31.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
460 |
+
"model.layers.31.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
461 |
+
"model.layers.31.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
462 |
+
"model.layers.31.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
463 |
+
"model.layers.31.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
464 |
+
"model.layers.31.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
465 |
+
"model.layers.31.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
466 |
+
"model.layers.31.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
467 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
468 |
+
"model.layers.31.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
469 |
+
"model.layers.31.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
470 |
+
"model.layers.31.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
471 |
+
"model.layers.31.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
472 |
+
"model.layers.31.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
473 |
+
"model.layers.31.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
474 |
+
"model.layers.31.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
475 |
+
"model.layers.31.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
476 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
477 |
+
"model.layers.32.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
478 |
+
"model.layers.32.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
479 |
+
"model.layers.32.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
480 |
+
"model.layers.32.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
481 |
+
"model.layers.32.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
482 |
+
"model.layers.32.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
483 |
+
"model.layers.32.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
484 |
+
"model.layers.32.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
485 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
486 |
+
"model.layers.32.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
487 |
+
"model.layers.32.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
488 |
+
"model.layers.32.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
489 |
+
"model.layers.32.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
490 |
+
"model.layers.32.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
491 |
+
"model.layers.32.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
492 |
+
"model.layers.32.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
493 |
+
"model.layers.32.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
494 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
495 |
+
"model.layers.33.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
496 |
+
"model.layers.33.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
497 |
+
"model.layers.33.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
498 |
+
"model.layers.33.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
499 |
+
"model.layers.33.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
500 |
+
"model.layers.33.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
501 |
+
"model.layers.33.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
502 |
+
"model.layers.33.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
503 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
504 |
+
"model.layers.33.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
505 |
+
"model.layers.33.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
506 |
+
"model.layers.33.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
507 |
+
"model.layers.33.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
508 |
+
"model.layers.33.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
509 |
+
"model.layers.33.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
510 |
+
"model.layers.33.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
511 |
+
"model.layers.33.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
512 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
513 |
+
"model.layers.34.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
514 |
+
"model.layers.34.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
515 |
+
"model.layers.34.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
516 |
+
"model.layers.34.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
517 |
+
"model.layers.34.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
518 |
+
"model.layers.34.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
519 |
+
"model.layers.34.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
520 |
+
"model.layers.34.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
521 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
522 |
+
"model.layers.34.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
523 |
+
"model.layers.34.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
524 |
+
"model.layers.34.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
525 |
+
"model.layers.34.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
526 |
+
"model.layers.34.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
527 |
+
"model.layers.34.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
528 |
+
"model.layers.34.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
529 |
+
"model.layers.34.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
530 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
531 |
+
"model.layers.35.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
532 |
+
"model.layers.35.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
533 |
+
"model.layers.35.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
534 |
+
"model.layers.35.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
535 |
+
"model.layers.35.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
536 |
+
"model.layers.35.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
537 |
+
"model.layers.35.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
538 |
+
"model.layers.35.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
539 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
540 |
+
"model.layers.35.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
541 |
+
"model.layers.35.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
542 |
+
"model.layers.35.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
543 |
+
"model.layers.35.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
544 |
+
"model.layers.35.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
545 |
+
"model.layers.35.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
546 |
+
"model.layers.35.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
547 |
+
"model.layers.35.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
548 |
+
"model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
549 |
+
"model.layers.36.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
550 |
+
"model.layers.36.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
551 |
+
"model.layers.36.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
552 |
+
"model.layers.36.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
553 |
+
"model.layers.36.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
554 |
+
"model.layers.36.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
555 |
+
"model.layers.36.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
556 |
+
"model.layers.36.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
557 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
558 |
+
"model.layers.36.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
559 |
+
"model.layers.36.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
560 |
+
"model.layers.36.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
561 |
+
"model.layers.36.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
562 |
+
"model.layers.36.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
563 |
+
"model.layers.36.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
564 |
+
"model.layers.36.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
565 |
+
"model.layers.36.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
566 |
+
"model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
567 |
+
"model.layers.37.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
568 |
+
"model.layers.37.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
569 |
+
"model.layers.37.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
570 |
+
"model.layers.37.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
571 |
+
"model.layers.37.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
572 |
+
"model.layers.37.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
573 |
+
"model.layers.37.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
574 |
+
"model.layers.37.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
575 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
576 |
+
"model.layers.37.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
577 |
+
"model.layers.37.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
578 |
+
"model.layers.37.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
579 |
+
"model.layers.37.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
580 |
+
"model.layers.37.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
581 |
+
"model.layers.37.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
582 |
+
"model.layers.37.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
583 |
+
"model.layers.37.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
584 |
+
"model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
585 |
+
"model.layers.38.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
586 |
+
"model.layers.38.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
587 |
+
"model.layers.38.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
588 |
+
"model.layers.38.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
589 |
+
"model.layers.38.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
590 |
+
"model.layers.38.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
591 |
+
"model.layers.38.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
592 |
+
"model.layers.38.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
593 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
594 |
+
"model.layers.38.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
595 |
+
"model.layers.38.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
596 |
+
"model.layers.38.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
597 |
+
"model.layers.38.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
598 |
+
"model.layers.38.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
599 |
+
"model.layers.38.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
600 |
+
"model.layers.38.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
601 |
+
"model.layers.38.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
602 |
+
"model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
603 |
+
"model.layers.39.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
604 |
+
"model.layers.39.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
605 |
+
"model.layers.39.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
606 |
+
"model.layers.39.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
607 |
+
"model.layers.39.mlp.gate_up_proj.g_idx": "model-00002-of-00002.safetensors",
|
608 |
+
"model.layers.39.mlp.gate_up_proj.qweight": "model-00002-of-00002.safetensors",
|
609 |
+
"model.layers.39.mlp.gate_up_proj.qzeros": "model-00002-of-00002.safetensors",
|
610 |
+
"model.layers.39.mlp.gate_up_proj.scales": "model-00002-of-00002.safetensors",
|
611 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
612 |
+
"model.layers.39.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
613 |
+
"model.layers.39.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
614 |
+
"model.layers.39.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
615 |
+
"model.layers.39.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
616 |
+
"model.layers.39.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
617 |
+
"model.layers.39.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
618 |
+
"model.layers.39.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
619 |
+
"model.layers.39.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
620 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
621 |
+
"model.layers.4.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
622 |
+
"model.layers.4.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
623 |
+
"model.layers.4.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
624 |
+
"model.layers.4.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
625 |
+
"model.layers.4.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
626 |
+
"model.layers.4.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
627 |
+
"model.layers.4.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
628 |
+
"model.layers.4.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
629 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
630 |
+
"model.layers.4.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
631 |
+
"model.layers.4.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
632 |
+
"model.layers.4.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
633 |
+
"model.layers.4.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
634 |
+
"model.layers.4.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
635 |
+
"model.layers.4.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
636 |
+
"model.layers.4.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
637 |
+
"model.layers.4.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
638 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
639 |
+
"model.layers.5.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
640 |
+
"model.layers.5.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
641 |
+
"model.layers.5.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
642 |
+
"model.layers.5.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
643 |
+
"model.layers.5.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
644 |
+
"model.layers.5.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
645 |
+
"model.layers.5.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
646 |
+
"model.layers.5.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
647 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
648 |
+
"model.layers.5.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
649 |
+
"model.layers.5.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
650 |
+
"model.layers.5.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
651 |
+
"model.layers.5.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
652 |
+
"model.layers.5.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
653 |
+
"model.layers.5.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
654 |
+
"model.layers.5.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
655 |
+
"model.layers.5.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
656 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
657 |
+
"model.layers.6.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
658 |
+
"model.layers.6.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
659 |
+
"model.layers.6.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
660 |
+
"model.layers.6.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
661 |
+
"model.layers.6.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
662 |
+
"model.layers.6.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
663 |
+
"model.layers.6.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
664 |
+
"model.layers.6.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
665 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
666 |
+
"model.layers.6.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
667 |
+
"model.layers.6.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
668 |
+
"model.layers.6.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
669 |
+
"model.layers.6.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
670 |
+
"model.layers.6.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
671 |
+
"model.layers.6.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
672 |
+
"model.layers.6.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
673 |
+
"model.layers.6.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
674 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
675 |
+
"model.layers.7.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
676 |
+
"model.layers.7.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
677 |
+
"model.layers.7.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
678 |
+
"model.layers.7.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
679 |
+
"model.layers.7.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
680 |
+
"model.layers.7.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
681 |
+
"model.layers.7.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
682 |
+
"model.layers.7.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
683 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
684 |
+
"model.layers.7.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
685 |
+
"model.layers.7.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
686 |
+
"model.layers.7.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
687 |
+
"model.layers.7.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
688 |
+
"model.layers.7.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
689 |
+
"model.layers.7.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
690 |
+
"model.layers.7.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
691 |
+
"model.layers.7.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
692 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
693 |
+
"model.layers.8.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
694 |
+
"model.layers.8.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
695 |
+
"model.layers.8.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
696 |
+
"model.layers.8.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
697 |
+
"model.layers.8.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
698 |
+
"model.layers.8.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
699 |
+
"model.layers.8.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
700 |
+
"model.layers.8.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
701 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
702 |
+
"model.layers.8.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
703 |
+
"model.layers.8.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
704 |
+
"model.layers.8.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
705 |
+
"model.layers.8.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
706 |
+
"model.layers.8.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
707 |
+
"model.layers.8.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
708 |
+
"model.layers.8.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
709 |
+
"model.layers.8.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
710 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
711 |
+
"model.layers.9.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
712 |
+
"model.layers.9.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
713 |
+
"model.layers.9.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
714 |
+
"model.layers.9.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
715 |
+
"model.layers.9.mlp.gate_up_proj.g_idx": "model-00001-of-00002.safetensors",
|
716 |
+
"model.layers.9.mlp.gate_up_proj.qweight": "model-00001-of-00002.safetensors",
|
717 |
+
"model.layers.9.mlp.gate_up_proj.qzeros": "model-00001-of-00002.safetensors",
|
718 |
+
"model.layers.9.mlp.gate_up_proj.scales": "model-00001-of-00002.safetensors",
|
719 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
720 |
+
"model.layers.9.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
721 |
+
"model.layers.9.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
722 |
+
"model.layers.9.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
723 |
+
"model.layers.9.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
724 |
+
"model.layers.9.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
725 |
+
"model.layers.9.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
726 |
+
"model.layers.9.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
727 |
+
"model.layers.9.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
728 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
729 |
+
}
|
730 |
+
}
|
Phi-4-GPTQ/quantize_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"sym": true,
|
5 |
+
"data_type": "int",
|
6 |
+
"enable_quanted_input": true,
|
7 |
+
"enable_minmax_tuning": true,
|
8 |
+
"seqlen": 2048,
|
9 |
+
"batch_size": 8,
|
10 |
+
"scale_dtype": "torch.float16",
|
11 |
+
"lr": 0.00390625,
|
12 |
+
"minmax_lr": 0.00390625,
|
13 |
+
"gradient_accumulate_steps": 1,
|
14 |
+
"iters": 256,
|
15 |
+
"amp": true,
|
16 |
+
"nsamples": 128,
|
17 |
+
"low_gpu_mem_usage": false,
|
18 |
+
"to_quant_block_names": null,
|
19 |
+
"enable_norm_bias_tuning": false,
|
20 |
+
"autoround_version": "0.4.4",
|
21 |
+
"quant_method": "gptq",
|
22 |
+
"desc_act": false,
|
23 |
+
"true_sequential": false,
|
24 |
+
"damp_percent": 0.01
|
25 |
+
}
|
Phi-4-GPTQ/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": true,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": true,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": true,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": true,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": true,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": "<|endoftext|>"
|
24 |
+
}
|
Phi-4-GPTQ/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-GPTQ/tokenizer_config.json
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"100256": {
|
5 |
+
"content": "<|dummy_0|>",
|
6 |
+
"lstrip": true,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": true,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"100257": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": true,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": true,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"100258": {
|
21 |
+
"content": "<|fim_prefix|>",
|
22 |
+
"lstrip": true,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": true,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"100259": {
|
29 |
+
"content": "<|fim_middle|>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"100260": {
|
37 |
+
"content": "<|fim_suffix|>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"100261": {
|
45 |
+
"content": "<|dummy_1|>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"100262": {
|
53 |
+
"content": "<|dummy_2|>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"100263": {
|
61 |
+
"content": "<|dummy_3|>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"100264": {
|
69 |
+
"content": "<|im_start|>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"100265": {
|
77 |
+
"content": "<|im_end|>",
|
78 |
+
"lstrip": true,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"100266": {
|
85 |
+
"content": "<|im_sep|>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"100267": {
|
93 |
+
"content": "<|dummy_4|>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"100268": {
|
101 |
+
"content": "<|dummy_5|>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"100269": {
|
109 |
+
"content": "<|dummy_6|>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"100270": {
|
117 |
+
"content": "<|dummy_7|>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"100271": {
|
125 |
+
"content": "<|dummy_8|>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"100272": {
|
133 |
+
"content": "<|dummy_9|>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"100273": {
|
141 |
+
"content": "<|dummy_10|>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"100274": {
|
149 |
+
"content": "<|dummy_11|>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"100275": {
|
157 |
+
"content": "<|dummy_12|>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"100276": {
|
165 |
+
"content": "<|endofprompt|>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"100277": {
|
173 |
+
"content": "<|dummy_13|>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"100278": {
|
181 |
+
"content": "<|dummy_14|>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"100279": {
|
189 |
+
"content": "<|dummy_15|>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"100280": {
|
197 |
+
"content": "<|dummy_16|>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"100281": {
|
205 |
+
"content": "<|dummy_17|>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"100282": {
|
213 |
+
"content": "<|dummy_18|>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"100283": {
|
221 |
+
"content": "<|dummy_19|>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"100284": {
|
229 |
+
"content": "<|dummy_20|>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"100285": {
|
237 |
+
"content": "<|dummy_21|>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"100286": {
|
245 |
+
"content": "<|dummy_22|>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"100287": {
|
253 |
+
"content": "<|dummy_23|>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"100288": {
|
261 |
+
"content": "<|dummy_24|>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"100289": {
|
269 |
+
"content": "<|dummy_25|>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"100290": {
|
277 |
+
"content": "<|dummy_26|>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"100291": {
|
285 |
+
"content": "<|dummy_27|>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"100292": {
|
293 |
+
"content": "<|dummy_28|>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"100293": {
|
301 |
+
"content": "<|dummy_29|>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"100294": {
|
309 |
+
"content": "<|dummy_30|>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"100295": {
|
317 |
+
"content": "<|dummy_31|>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"100296": {
|
325 |
+
"content": "<|dummy_32|>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"100297": {
|
333 |
+
"content": "<|dummy_33|>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"100298": {
|
341 |
+
"content": "<|dummy_34|>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"100299": {
|
349 |
+
"content": "<|dummy_35|>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"100300": {
|
357 |
+
"content": "<|dummy_36|>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"100301": {
|
365 |
+
"content": "<|dummy_37|>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"100302": {
|
373 |
+
"content": "<|dummy_38|>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"100303": {
|
381 |
+
"content": "<|dummy_39|>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"100304": {
|
389 |
+
"content": "<|dummy_40|>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"100305": {
|
397 |
+
"content": "<|dummy_41|>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"100306": {
|
405 |
+
"content": "<|dummy_42|>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"100307": {
|
413 |
+
"content": "<|dummy_43|>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"100308": {
|
421 |
+
"content": "<|dummy_44|>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"100309": {
|
429 |
+
"content": "<|dummy_45|>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"100310": {
|
437 |
+
"content": "<|dummy_46|>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"100311": {
|
445 |
+
"content": "<|dummy_47|>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"100312": {
|
453 |
+
"content": "<|dummy_48|>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"100313": {
|
461 |
+
"content": "<|dummy_49|>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"100314": {
|
469 |
+
"content": "<|dummy_50|>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"100315": {
|
477 |
+
"content": "<|dummy_51|>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"100316": {
|
485 |
+
"content": "<|dummy_52|>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"100317": {
|
493 |
+
"content": "<|dummy_53|>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"100318": {
|
501 |
+
"content": "<|dummy_54|>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"100319": {
|
509 |
+
"content": "<|dummy_55|>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"100320": {
|
517 |
+
"content": "<|dummy_56|>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"100321": {
|
525 |
+
"content": "<|dummy_57|>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"100322": {
|
533 |
+
"content": "<|dummy_58|>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"100323": {
|
541 |
+
"content": "<|dummy_59|>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"100324": {
|
549 |
+
"content": "<|dummy_60|>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"100325": {
|
557 |
+
"content": "<|dummy_61|>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"100326": {
|
565 |
+
"content": "<|dummy_62|>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"100327": {
|
573 |
+
"content": "<|dummy_63|>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"100328": {
|
581 |
+
"content": "<|dummy_64|>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"100329": {
|
589 |
+
"content": "<|dummy_65|>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"100330": {
|
597 |
+
"content": "<|dummy_66|>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"100331": {
|
605 |
+
"content": "<|dummy_67|>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"100332": {
|
613 |
+
"content": "<|dummy_68|>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"100333": {
|
621 |
+
"content": "<|dummy_69|>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"100334": {
|
629 |
+
"content": "<|dummy_70|>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"100335": {
|
637 |
+
"content": "<|dummy_71|>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"100336": {
|
645 |
+
"content": "<|dummy_72|>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"100337": {
|
653 |
+
"content": "<|dummy_73|>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"100338": {
|
661 |
+
"content": "<|dummy_74|>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"100339": {
|
669 |
+
"content": "<|dummy_75|>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"100340": {
|
677 |
+
"content": "<|dummy_76|>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"100341": {
|
685 |
+
"content": "<|dummy_77|>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"100342": {
|
693 |
+
"content": "<|dummy_78|>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"100343": {
|
701 |
+
"content": "<|dummy_79|>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"100344": {
|
709 |
+
"content": "<|dummy_80|>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"100345": {
|
717 |
+
"content": "<|dummy_81|>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"100346": {
|
725 |
+
"content": "<|dummy_82|>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"100347": {
|
733 |
+
"content": "<|dummy_83|>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"100348": {
|
741 |
+
"content": "<|dummy_84|>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"100349": {
|
749 |
+
"content": "<|dummy_85|>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"100350": {
|
757 |
+
"content": "<|dummy_86|>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"100351": {
|
765 |
+
"content": "<|dummy_87|>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
}
|
772 |
+
},
|
773 |
+
"bos_token": "<|endoftext|>",
|
774 |
+
"chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|><|im_start|>assistant<|im_sep|>'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}",
|
775 |
+
"clean_up_tokenization_spaces": false,
|
776 |
+
"eos_token": "<|endoftext|>",
|
777 |
+
"extra_special_tokens": {},
|
778 |
+
"model_max_length": 16384,
|
779 |
+
"pad_token": "<|endoftext|>",
|
780 |
+
"tokenizer_class": "GPT2Tokenizer",
|
781 |
+
"unk_token": "<|endoftext|>"
|
782 |
+
}
|
Phi-4-GPTQ/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|