File size: 1,870 Bytes
d70e821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- simplification
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: social-behavior-emotions
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# social-behavior-emotions

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3206
- Precision: 0.9284
- Recall: 0.9206
- F1: 0.9224

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 1.0252        | 1.0   | 800  | 0.4645          | 0.8877    | 0.8781 | 0.8798 |
| 0.4162        | 2.0   | 1600 | 0.3308          | 0.9140    | 0.9025 | 0.9038 |
| 0.2769        | 3.0   | 2400 | 0.2693          | 0.9234    | 0.9113 | 0.9138 |
| 0.2056        | 4.0   | 3200 | 0.3343          | 0.9250    | 0.9163 | 0.9179 |
| 0.1383        | 5.0   | 4000 | 0.3206          | 0.9284    | 0.9206 | 0.9224 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2