Jojoistauchdabei commited on
Commit
de26980
·
verified ·
1 Parent(s): 6c9f9bc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - Qwen/Qwen3-Coder-30B-A3B-Instruct
8
+ ---
9
+
10
+ # Qwen3-Coder-30B-A3B-Instruct
11
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
12
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
13
+ </a>
14
+
15
+ ## Highlights
16
+
17
+ **Qwen3-Coder** is available in multiple sizes. Today, we're excited to introduce **Qwen3-Coder-30B-A3B-Instruct**. This streamlined model maintains impressive performance and efficiency, featuring the following key enhancements:
18
+
19
+ - **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks.
20
+ - **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
21
+ - **Agentic Coding** supporting for most platform such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.
22
+
23
+ ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Coder/qwen3-coder-30a3-main.jpg)
24
+
25
+ ## Model Overview
26
+
27
+ **Qwen3-Coder-30B-A3B-Instruct** has the following features:
28
+ - Type: Causal Language Models
29
+ - Training Stage: Pretraining & Post-training
30
+ - Number of Parameters: 30.5B in total and 3.3B activated
31
+ - Number of Layers: 48
32
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
33
+ - Number of Experts: 128
34
+ - Number of Activated Experts: 8
35
+ - Context Length: **262,144 natively**.
36
+
37
+ **NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
38
+
39
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-coder/), [GitHub](https://github.com/QwenLM/Qwen3-Coder), and [Documentation](https://qwen.readthedocs.io/en/latest/).
40
+
41
+
42
+ ## Quickstart
43
+
44
+ We advise you to use the latest version of `transformers`.
45
+
46
+ With `transformers<4.51.0`, you will encounter the following error:
47
+ ```
48
+ KeyError: 'qwen3_moe'
49
+ ```
50
+
51
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+
55
+ model_name = "Qwen/Qwen3-Coder-30B-A3B-Instruct"
56
+
57
+ # load the tokenizer and the model
58
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
59
+ model = AutoModelForCausalLM.from_pretrained(
60
+ model_name,
61
+ torch_dtype="auto",
62
+ device_map="auto"
63
+ )
64
+
65
+ # prepare the model input
66
+ prompt = "Write a quick sort algorithm."
67
+ messages = [
68
+ {"role": "user", "content": prompt}
69
+ ]
70
+ text = tokenizer.apply_chat_template(
71
+ messages,
72
+ tokenize=False,
73
+ add_generation_prompt=True,
74
+ )
75
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
76
+
77
+ # conduct text completion
78
+ generated_ids = model.generate(
79
+ **model_inputs,
80
+ max_new_tokens=65536
81
+ )
82
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
83
+
84
+ content = tokenizer.decode(output_ids, skip_special_tokens=True)
85
+
86
+ print("content:", content)
87
+ ```
88
+
89
+ **Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
90
+
91
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
92
+
93
+ ## Agentic Coding
94
+
95
+ Qwen3-Coder excels in tool calling capabilities.
96
+
97
+ You can simply define or use any tools as following example.
98
+ ```python
99
+ # Your tool implementation
100
+ def square_the_number(num: float) -> dict:
101
+ return num ** 2
102
+
103
+ # Define Tools
104
+ tools=[
105
+ {
106
+ "type":"function",
107
+ "function":{
108
+ "name": "square_the_number",
109
+ "description": "output the square of the number.",
110
+ "parameters": {
111
+ "type": "object",
112
+ "required": ["input_num"],
113
+ "properties": {
114
+ 'input_num': {
115
+ 'type': 'number',
116
+ 'description': 'input_num is a number that will be squared'
117
+ }
118
+ },
119
+ }
120
+ }
121
+ }
122
+ ]
123
+
124
+ import OpenAI
125
+ # Define LLM
126
+ client = OpenAI(
127
+ # Use a custom endpoint compatible with OpenAI API
128
+ base_url='http://localhost:8000/v1', # api_base
129
+ api_key="EMPTY"
130
+ )
131
+
132
+ messages = [{'role': 'user', 'content': 'square the number 1024'}]
133
+
134
+ completion = client.chat.completions.create(
135
+ messages=messages,
136
+ model="Qwen3-Coder-30B-A3B-Instruct",
137
+ max_tokens=65536,
138
+ tools=tools,
139
+ )
140
+
141
+ print(completion.choice[0])
142
+ ```
143
+
144
+ ## Best Practices
145
+
146
+ To achieve optimal performance, we recommend the following settings:
147
+
148
+ 1. **Sampling Parameters**:
149
+ - We suggest using `temperature=0.7`, `top_p=0.8`, `top_k=20`, `repetition_penalty=1.05`.
150
+
151
+ 2. **Adequate Output Length**: We recommend using an output length of 65,536 tokens for most queries, which is adequate for instruct models.
152
+
153
+
154
+ ### Citation
155
+
156
+ If you find our work helpful, feel free to give us a cite.
157
+
158
+ ```
159
+ @misc{qwen3technicalreport,
160
+ title={Qwen3 Technical Report},
161
+ author={Qwen Team},
162
+ year={2025},
163
+ eprint={2505.09388},
164
+ archivePrefix={arXiv},
165
+ primaryClass={cs.CL},
166
+ url={https://arxiv.org/abs/2505.09388},
167
+ }
168
+ ```