File size: 1,647 Bytes
84d608a
 
4efeafb
 
 
b5153e1
 
4efeafb
 
 
84d608a
 
4efeafb
 
84d608a
4efeafb
84d608a
4efeafb
b5153e1
 
 
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
84d608a
4efeafb
 
 
 
 
 
 
 
 
 
 
 
 
 
84d608a
4efeafb
84d608a
b5153e1
 
 
 
84d608a
 
4efeafb
84d608a
4efeafb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
base_model: Jennny/llama3_8b_sft_ultrafb
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: llama3_8b_honest_rm_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama3_8b_honest_rm_full

This model is a fine-tuned version of [Jennny/llama3_8b_sft_ultrafb](https://huggingface.co/Jennny/llama3_8b_sft_ultrafb) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2657
- Accuracy: 0.908

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.3012        | 0.4632 | 50   | 0.2989          | 0.886    |
| 0.2851        | 0.9265 | 100  | 0.2657          | 0.908    |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3