--- library_name: transformers base_model: Jennny/llama3_8b_sft_ultrafb tags: - generated_from_trainer metrics: - accuracy model-index: - name: llama3_8b_general_rm_full results: [] --- # llama3_8b_general_rm_full This model is a fine-tuned version of [Jennny/llama3_8b_sft_ultrafb](https://huggingface.co/Jennny/llama3_8b_sft_ultrafb) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2676 - Accuracy: 0.8858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3173 | 0.1549 | 50 | 0.3212 | 0.8622 | | 0.3037 | 0.3098 | 100 | 0.2959 | 0.8742 | | 0.2982 | 0.4647 | 150 | 0.3012 | 0.8735 | | 0.2857 | 0.6196 | 200 | 0.2818 | 0.8823 | | 0.2773 | 0.7744 | 250 | 0.2716 | 0.8853 | | 0.2691 | 0.9293 | 300 | 0.2676 | 0.8858 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3