File size: 1,902 Bytes
bdb5bd1
 
20c42ac
 
 
 
 
 
 
 
bdb5bd1
 
20c42ac
 
bdb5bd1
20c42ac
bdb5bd1
20c42ac
 
 
 
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
bdb5bd1
20c42ac
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb5bd1
20c42ac
bdb5bd1
20c42ac
 
 
 
 
 
 
 
bdb5bd1
 
20c42ac
bdb5bd1
20c42ac
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
base_model: Jennny/llama3_8b_sft_ultrafb
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: llama3_8b_general_rm_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama3_8b_general_rm_full

This model is a fine-tuned version of [Jennny/llama3_8b_sft_ultrafb](https://huggingface.co/Jennny/llama3_8b_sft_ultrafb) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2676
- Accuracy: 0.8858

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.3173        | 0.1549 | 50   | 0.3212          | 0.8622   |
| 0.3037        | 0.3098 | 100  | 0.2959          | 0.8742   |
| 0.2982        | 0.4647 | 150  | 0.3012          | 0.8735   |
| 0.2857        | 0.6196 | 200  | 0.2818          | 0.8823   |
| 0.2773        | 0.7744 | 250  | 0.2716          | 0.8853   |
| 0.2691        | 0.9293 | 300  | 0.2676          | 0.8858   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3