File size: 1,844 Bytes
9853f9d
 
 
 
 
 
 
 
f89ca32
 
9853f9d
 
 
 
 
 
 
 
 
 
 
0690774
f89ca32
 
9853f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0690774
9853f9d
 
 
f89ca32
 
9853f9d
 
f89ca32
0690774
9853f9d
 
 
 
f89ca32
 
 
 
 
 
9853f9d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
language:
- es
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper large LoRA Merged Es - Jbautistas
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper large LoRA Merged Es - Jbautistas

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7153
- Wer: 58.9379

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.4943        | 6.2759  | 50   | 1.1849          | 58.2648 |
| 1.1692        | 12.5517 | 100  | 1.0537          | 56.2453 |
| 0.9958        | 18.8276 | 150  | 0.8947          | 54.8990 |
| 0.7308        | 25.0    | 200  | 0.7153          | 58.9379 |


### Framework versions

- Transformers 4.56.0
- Pytorch 2.3.0+cu121
- Datasets 3.1.0
- Tokenizers 0.22.0