--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: whisper-tiny-tamil-telugu results: - task: name: Audio Classification type: audio-classification dataset: name: Speech Commands type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.06818181818181818 --- # whisper-tiny-tamil-telugu This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Speech Commands dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.0682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7103 | 1.0 | 175 | 1.7471 | 0.3182 | | 1.7409 | 2.0 | 350 | 1.7368 | 0.1818 | | 1.8159 | 3.0 | 525 | 1.7274 | 0.2955 | | 1.7017 | 4.0 | 700 | 1.7233 | 0.2955 | | 1.7597 | 5.0 | 875 | 1.7177 | 0.2955 | | 1.7603 | 6.0 | 1050 | 1.7123 | 0.2955 | | 1.6626 | 7.0 | 1225 | 1.7082 | 0.2955 | | 1.5964 | 8.0 | 1400 | nan | 0.25 | | 0.0 | 9.0 | 1575 | nan | 0.0682 | | 0.0 | 10.0 | 1750 | nan | 0.0682 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.2.2 - Datasets 3.2.0 - Tokenizers 0.21.0