nielsr HF Staff commited on
Commit
06f76b6
ยท
verified ยท
1 Parent(s): 372b447

Add comprehensive model card

Browse files

This PR adds a comprehensive model card for the DoctorAgent-RL model.

It includes:
- Relevant metadata: `pipeline_tag: text-generation` and `library_name: transformers`.
- A detailed description of the model and its key features.
- Links to the research paper ([DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue](https://huggingface.co/papers/2505.19630)) and the GitHub repository ([https://github.com/JarvisUSTC/DoctorAgent-RL](https://github.com/JarvisUSTC/DoctorAgent-RL)).
- An example of how to use the model with the `transformers` library for multi-turn clinical dialogue.
- Citation information.

This will make the model more discoverable and easier to use for the community.

Files changed (1) hide show
  1. README.md +81 -3
README.md CHANGED
@@ -1,3 +1,81 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - dialogue
7
+ - medical
8
+ - reinforcement-learning
9
+ - multi-agent
10
+ ---
11
+
12
+ # DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue
13
+
14
+ This repository contains the `DoctorAgent-RL` model, which is a reinforcement learning (RL)-based multi-agent collaborative framework designed to revolutionize clinical dialogue. The model is presented in the paper [DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue](https://huggingface.co/papers/2505.19630).
15
+
16
+ **Code**: [https://github.com/JarvisUSTC/DoctorAgent-RL](https://github.com/JarvisUSTC/DoctorAgent-RL)
17
+
18
+ <div align="center">
19
+ <img width="1231" alt="DoctorAgent-RL Framework" src="https://github.com/user-attachments/assets/bd9f676e-01f9-406c-881d-c2b9f45e62f3" />
20
+ </div>
21
+
22
+ ## Introduction
23
+
24
+ DoctorAgent-RL addresses the critical limitations of static clinical dialogue systems by modeling medical consultations as dynamic decision-making processes under uncertainty. It enables:
25
+
26
+ 1. **Adaptive Information Gathering**: Intelligent adjustment of dialogue paths based on patient responses.
27
+ 2. **Clinical Reasoning Alignment**: Autonomous development of interaction strategies consistent with medical logic.
28
+ 3. **Overcoming Static Paradigms**: Moving beyond superficial pattern imitation in existing dialogue datasets.
29
+
30
+ Through continuous multi-turn interactions between doctor and patient agents, optimized via reinforcement learning, DoctorAgent-RL achieves significant improvements in diagnostic accuracy and interaction efficiency.
31
+
32
+ ## Key Features
33
+
34
+ - ๐Ÿง  **Multi-Agent Collaboration**: Doctor and patient agents with distinct roles and objectives.
35
+ - ๐Ÿ“ˆ **Dynamic Strategy Optimization**: Reinforcement learning-based policy updates for adaptive behavior.
36
+ - ๐ŸŽฏ **Comprehensive Reward Design**: Multi-dimensional consultation evaluation metrics guiding optimal strategies.
37
+ - ๐Ÿ“Š **Medical Knowledge Integration**: Clinical reasoning logic embedded in decision-making processes.
38
+ - ๐Ÿ“„ **MTMedDialog Dataset**: The first English multi-turn medical consultation dataset designed with simulation capabilities.
39
+
40
+ ## Usage
41
+
42
+ You can use the `DoctorAgent-RL` model with the Hugging Face `transformers` library for text generation in a multi-turn dialogue context.
43
+
44
+ ```python
45
+ from transformers import AutoModelForCausalLM, AutoTokenizer
46
+ import torch
47
+
48
+ # Load the model and tokenizer
49
+ model_id = "Jarvis1111/DoctorAgent-RL"
50
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
51
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
52
+
53
+ # Prepare a sample conversation
54
+ messages = [
55
+ {"role": "user", "content": "Hello Doctor, I have a headache and feel tired."},
56
+ ]
57
+
58
+ # Apply the chat template defined in the tokenizer_config.json
59
+ # This is crucial for proper multi-turn dialogue with Qwen models
60
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
61
+
62
+ # Generate response
63
+ input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
64
+ output = model.generate(input_ids, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9)
65
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
66
+
67
+ print(response)
68
+ ```
69
+
70
+ ## Citation
71
+
72
+ If DoctorAgent-RL contributes to your research, please consider citing our work:
73
+
74
+ ```latex
75
+ @article{feng2025doctoragent,
76
+ title={DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue},
77
+ author={Feng, Yichun and Wang, Jiawei and Zhou, Lu and Li, Yixue},
78
+ journal={arXiv preprint arXiv:2505.19630},
79
+ year={2025}
80
+ }
81
+ ```