--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8599999999999999 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Accuracy: 0.86 - F1: 0.8600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 2024 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | 0.6891 | 0.9956 | 112 | 0.6422 | 0.76 | 0.76 | | 0.7267 | 2.0 | 225 | 0.8163 | 0.78 | 0.78 | | 0.7077 | 2.9956 | 337 | 0.7802 | 0.8 | 0.8000 | | 0.1884 | 4.0 | 450 | 0.6157 | 0.87 | 0.87 | | 0.0209 | 4.9956 | 562 | 0.7885 | 0.84 | 0.8400 | | 0.117 | 6.0 | 675 | 0.6744 | 0.85 | 0.85 | | 0.0098 | 6.9956 | 787 | 0.6213 | 0.85 | 0.85 | | 0.0002 | 8.0 | 900 | 1.0599 | 0.82 | 0.82 | | 0.0001 | 8.9956 | 1012 | 0.7052 | 0.86 | 0.8600 | | 0.0001 | 10.0 | 1125 | 0.6891 | 0.85 | 0.85 | | 0.0001 | 10.9956 | 1237 | 0.6718 | 0.86 | 0.8600 | | 0.0001 | 12.0 | 1350 | 0.6712 | 0.85 | 0.85 | | 0.0001 | 12.9956 | 1462 | 0.6942 | 0.86 | 0.8600 | | 0.0001 | 14.0 | 1575 | 0.7002 | 0.86 | 0.8600 | | 0.0176 | 14.9956 | 1687 | 0.7053 | 0.86 | 0.8600 | | 0.0001 | 16.0 | 1800 | 0.7140 | 0.86 | 0.8600 | | 0.0001 | 16.9956 | 1912 | 0.7089 | 0.86 | 0.8600 | | 0.0 | 18.0 | 2025 | 0.7120 | 0.86 | 0.8600 | | 0.0628 | 18.9956 | 2137 | 0.7162 | 0.86 | 0.8600 | | 0.0037 | 19.9111 | 2240 | 0.7149 | 0.86 | 0.8600 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1