--- language: - en license: mit library_name: transformers tags: - text-generation - transformers - safetensors - qwen3 - chat - conversational - text-generation-inference - compressed-tensors pipeline_tag: text-generation --- # Model Overview * **Model Optimizations:** * **Weight quantization:** FP8 * **Activation quantization:** FP8 * **Release Date:** 1/29/2025 Quantized version of deepseek-ai/DeepSeek-R1-0528-Qwen3-8B to FP8 data type, ready for inference with SGLang >= 0.3 or vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. ## Deployment ### Use with SGLang ```bash python -m sglang.launch_server --model-path JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic \ --port 30000 --host 0.0.0.0 ``` ### Use with vLLM ```bash python -m vllm.entrypoints.openai.api_server --model JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic \ --port 8000 --host 0.0.0.0 ``` ## Creation This model was created with llm-compressor by running the code snippet below.
Model Creation Code ```python from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot MODEL_ID = "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B" # 1) Load model. model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # 2) Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] ) # 3) Apply quantization and save in compressed-tensors format. OUTPUT_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" oneshot( model=model, recipe=recipe, tokenizer=tokenizer, output_dir=OUTPUT_DIR, ) # Confirm generations of the quantized model look sane. print("========== SAMPLE GENERATION ==============") input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=20) print(tokenizer.decode(output[0])) print("==========================================") ```
## Evaluation TBA ## Base Model This model is a quantized version of [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B). ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the quantized model model_id = "JamAndTeaStudios/DeepSeek-R1-0528-Qwen3-8B-FP8-Dynamic" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) # Example usage messages = [ {"role": "user", "content": "What is the capital of France?"} ] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(text, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=100, temperature=0.7, do_sample=True ) response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) print(response) ``` ## License This model is released under the MIT License.