--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta_large_len256 results: [] --- # roberta_large_len256 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3063 - Accuracy: 0.9503 - F1: 0.9503 - Precision: 0.9503 - Recall: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3137 | 1.0 | 4000 | 0.3495 | 0.9193 | 0.9195 | 0.9217 | 0.9193 | | 0.1578 | 2.0 | 8000 | 0.2891 | 0.9484 | 0.9484 | 0.9491 | 0.9484 | | 0.0851 | 3.0 | 12000 | 0.3063 | 0.9503 | 0.9503 | 0.9503 | 0.9503 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.1.2 - Datasets 3.5.1 - Tokenizers 0.21.1