--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SUR results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8616666666666667 - name: Precision type: precision value: 0.8756807267844546 - name: Recall type: recall value: 0.8616666666666667 - name: F1 type: f1 value: 0.8604478619877372 --- # vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5091 - Accuracy: 0.8617 - Precision: 0.8757 - Recall: 0.8617 - F1: 0.8604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2613 | 0.3333 | 100 | 0.6234 | 0.7883 | 0.8364 | 0.7883 | 0.7915 | | 0.1745 | 0.6667 | 200 | 0.7693 | 0.7342 | 0.7739 | 0.7342 | 0.7088 | | 0.1303 | 1.0 | 300 | 0.5091 | 0.8617 | 0.8757 | 0.8617 | 0.8604 | | 0.0163 | 1.3333 | 400 | 0.5309 | 0.8708 | 0.8869 | 0.8708 | 0.8706 | | 0.009 | 1.6667 | 500 | 0.9663 | 0.7725 | 0.8345 | 0.7725 | 0.7706 | | 0.0221 | 2.0 | 600 | 1.3265 | 0.7225 | 0.8133 | 0.7225 | 0.7219 | | 0.0053 | 2.3333 | 700 | 0.8728 | 0.8408 | 0.8727 | 0.8408 | 0.8366 | | 0.0031 | 2.6667 | 800 | 0.9499 | 0.8258 | 0.8596 | 0.8258 | 0.8225 | | 0.0733 | 3.0 | 900 | 0.8135 | 0.8558 | 0.8840 | 0.8558 | 0.8554 | | 0.0026 | 3.3333 | 1000 | 0.6858 | 0.885 | 0.8963 | 0.885 | 0.8826 | | 0.0028 | 3.6667 | 1100 | 0.8497 | 0.8608 | 0.9004 | 0.8608 | 0.8631 | | 0.0021 | 4.0 | 1200 | 1.0722 | 0.81 | 0.8493 | 0.81 | 0.8114 | | 0.0023 | 4.3333 | 1300 | 0.7217 | 0.8742 | 0.8742 | 0.8742 | 0.8737 | | 0.0243 | 4.6667 | 1400 | 0.8721 | 0.8467 | 0.8627 | 0.8467 | 0.8449 | | 0.004 | 5.0 | 1500 | 0.8314 | 0.8425 | 0.8500 | 0.8425 | 0.8402 | | 0.0011 | 5.3333 | 1600 | 0.9170 | 0.8367 | 0.8362 | 0.8367 | 0.8347 | | 0.0008 | 5.6667 | 1700 | 0.9080 | 0.8475 | 0.8536 | 0.8475 | 0.8452 | | 0.0017 | 6.0 | 1800 | 0.8709 | 0.855 | 0.8642 | 0.855 | 0.8527 | | 0.0007 | 6.3333 | 1900 | 0.7878 | 0.8808 | 0.8899 | 0.8808 | 0.8777 | | 0.0006 | 6.6667 | 2000 | 0.7954 | 0.8825 | 0.8926 | 0.8825 | 0.8795 | | 0.0007 | 7.0 | 2100 | 1.0196 | 0.8475 | 0.8640 | 0.8475 | 0.8438 | | 0.0005 | 7.3333 | 2200 | 1.0647 | 0.8508 | 0.8665 | 0.8508 | 0.8463 | | 0.0005 | 7.6667 | 2300 | 1.2970 | 0.8125 | 0.8430 | 0.8125 | 0.8111 | | 0.0005 | 8.0 | 2400 | 1.2049 | 0.8167 | 0.8214 | 0.8167 | 0.8143 | | 0.0021 | 8.3333 | 2500 | 0.9407 | 0.8642 | 0.8663 | 0.8642 | 0.8602 | | 0.0006 | 8.6667 | 2600 | 1.8421 | 0.7258 | 0.8273 | 0.7258 | 0.7256 | | 0.0005 | 9.0 | 2700 | 1.6230 | 0.76 | 0.7921 | 0.76 | 0.7555 | | 0.0116 | 9.3333 | 2800 | 1.2096 | 0.8258 | 0.8495 | 0.8258 | 0.8182 | | 0.0004 | 9.6667 | 2900 | 1.4233 | 0.8158 | 0.8258 | 0.8158 | 0.8111 | | 0.0006 | 10.0 | 3000 | 1.5142 | 0.7775 | 0.8340 | 0.7775 | 0.7760 | | 0.0004 | 10.3333 | 3100 | 0.8260 | 0.875 | 0.8833 | 0.875 | 0.8715 | | 0.0004 | 10.6667 | 3200 | 0.8945 | 0.8642 | 0.8754 | 0.8642 | 0.8631 | | 0.0003 | 11.0 | 3300 | 0.9189 | 0.865 | 0.8658 | 0.865 | 0.8596 | | 0.0003 | 11.3333 | 3400 | 0.6929 | 0.8917 | 0.8926 | 0.8917 | 0.8882 | | 0.0003 | 11.6667 | 3500 | 0.7764 | 0.8908 | 0.9000 | 0.8908 | 0.8879 | | 0.0003 | 12.0 | 3600 | 0.9250 | 0.8617 | 0.8749 | 0.8617 | 0.8598 | | 0.0002 | 12.3333 | 3700 | 0.9109 | 0.865 | 0.8772 | 0.865 | 0.8628 | | 0.0002 | 12.6667 | 3800 | 0.9101 | 0.865 | 0.8772 | 0.865 | 0.8628 | | 0.0002 | 13.0 | 3900 | 0.9113 | 0.8675 | 0.8792 | 0.8675 | 0.8653 | | 0.0002 | 13.3333 | 4000 | 0.9124 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 13.6667 | 4100 | 0.9130 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 14.0 | 4200 | 0.9124 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 14.3333 | 4300 | 0.9125 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 14.6667 | 4400 | 0.9130 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 15.0 | 4500 | 0.9131 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0