--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SUR results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8135731807031888 - name: Precision type: precision value: 0.8642509111347894 - name: Recall type: recall value: 0.8135731807031888 - name: F1 type: f1 value: 0.8123876857104402 --- # vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.8136 - Precision: 0.8643 - Recall: 0.8136 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1898 | 0.3333 | 100 | 0.9163 | 0.7294 | 0.7512 | 0.7294 | 0.7288 | | 0.2681 | 0.6667 | 200 | 0.6804 | 0.8136 | 0.8643 | 0.8136 | 0.8124 | | 0.1036 | 1.0 | 300 | 0.9091 | 0.7939 | 0.8124 | 0.7939 | 0.7880 | | 0.1047 | 1.3333 | 400 | 1.5065 | 0.6566 | 0.6964 | 0.6566 | 0.6685 | | 0.0449 | 1.6667 | 500 | 0.9248 | 0.7833 | 0.7988 | 0.7833 | 0.7893 | | 0.1781 | 2.0 | 600 | 1.1234 | 0.7621 | 0.7926 | 0.7621 | 0.7607 | | 0.1509 | 2.3333 | 700 | 1.1867 | 0.7465 | 0.7468 | 0.7465 | 0.7396 | | 0.1324 | 2.6667 | 800 | 1.3904 | 0.7433 | 0.7586 | 0.7433 | 0.7329 | | 0.0037 | 3.0 | 900 | 1.3699 | 0.7408 | 0.7950 | 0.7408 | 0.7441 | | 0.0025 | 3.3333 | 1000 | 1.2225 | 0.7433 | 0.7667 | 0.7433 | 0.7448 | | 0.0587 | 3.6667 | 1100 | 1.4635 | 0.7244 | 0.7766 | 0.7244 | 0.7274 | | 0.0422 | 4.0 | 1200 | 1.4949 | 0.7433 | 0.7599 | 0.7433 | 0.7398 | | 0.0084 | 4.3333 | 1300 | 1.2363 | 0.7841 | 0.7863 | 0.7841 | 0.7788 | | 0.0796 | 4.6667 | 1400 | 1.5322 | 0.7392 | 0.7473 | 0.7392 | 0.7419 | | 0.003 | 5.0 | 1500 | 1.6031 | 0.7294 | 0.7752 | 0.7294 | 0.7319 | | 0.0012 | 5.3333 | 1600 | 1.0992 | 0.8062 | 0.8066 | 0.8062 | 0.8056 | | 0.0009 | 5.6667 | 1700 | 2.1569 | 0.6999 | 0.7144 | 0.6999 | 0.6907 | | 0.0022 | 6.0 | 1800 | 2.2827 | 0.6312 | 0.6385 | 0.6312 | 0.6195 | | 0.0009 | 6.3333 | 1900 | 1.8713 | 0.7089 | 0.7476 | 0.7089 | 0.6997 | | 0.0012 | 6.6667 | 2000 | 1.9461 | 0.6983 | 0.6983 | 0.6983 | 0.6788 | | 0.0006 | 7.0 | 2100 | 1.8889 | 0.7114 | 0.7217 | 0.7114 | 0.6998 | | 0.0006 | 7.3333 | 2200 | 1.9514 | 0.6991 | 0.7212 | 0.6991 | 0.6794 | | 0.0005 | 7.6667 | 2300 | 1.9619 | 0.7138 | 0.6644 | 0.7138 | 0.6726 | | 0.0013 | 8.0 | 2400 | 1.7297 | 0.7490 | 0.7589 | 0.7490 | 0.7493 | | 0.0005 | 8.3333 | 2500 | 2.2490 | 0.6950 | 0.7015 | 0.6950 | 0.6914 | | 0.0004 | 8.6667 | 2600 | 2.2431 | 0.6975 | 0.7039 | 0.6975 | 0.6932 | | 0.0009 | 9.0 | 2700 | 1.8096 | 0.7490 | 0.7593 | 0.7490 | 0.7443 | | 0.0003 | 9.3333 | 2800 | 1.9490 | 0.7375 | 0.7450 | 0.7375 | 0.7353 | | 0.0011 | 9.6667 | 2900 | 2.0860 | 0.7294 | 0.7239 | 0.7294 | 0.7153 | | 0.0003 | 10.0 | 3000 | 1.9343 | 0.7383 | 0.7468 | 0.7383 | 0.7399 | | 0.0004 | 10.3333 | 3100 | 1.9158 | 0.7457 | 0.7513 | 0.7457 | 0.7464 | | 0.0003 | 10.6667 | 3200 | 1.9289 | 0.7465 | 0.7526 | 0.7465 | 0.7475 | | 0.0802 | 11.0 | 3300 | 2.0591 | 0.7375 | 0.7487 | 0.7375 | 0.7404 | | 0.0565 | 11.3333 | 3400 | 2.2480 | 0.7016 | 0.7854 | 0.7016 | 0.7131 | | 0.0003 | 11.6667 | 3500 | 1.7115 | 0.7539 | 0.8088 | 0.7539 | 0.7572 | | 0.0003 | 12.0 | 3600 | 1.9888 | 0.7195 | 0.7679 | 0.7195 | 0.7222 | | 0.0003 | 12.3333 | 3700 | 2.0141 | 0.7179 | 0.7227 | 0.7179 | 0.7133 | | 0.0002 | 12.6667 | 3800 | 2.0314 | 0.7089 | 0.7158 | 0.7089 | 0.7081 | | 0.0002 | 13.0 | 3900 | 1.8735 | 0.7187 | 0.7291 | 0.7187 | 0.7220 | | 0.0002 | 13.3333 | 4000 | 1.8854 | 0.7179 | 0.7281 | 0.7179 | 0.7210 | | 0.0002 | 13.6667 | 4100 | 1.8931 | 0.7179 | 0.7281 | 0.7179 | 0.7210 | | 0.0002 | 14.0 | 4200 | 1.8992 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | | 0.0002 | 14.3333 | 4300 | 1.9039 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | | 0.0002 | 14.6667 | 4400 | 1.9063 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | | 0.0002 | 15.0 | 4500 | 1.9073 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0