--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SEC results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9241666666666667 - name: Precision type: precision value: 0.9296490647145426 - name: Recall type: recall value: 0.9241666666666667 - name: F1 type: f1 value: 0.9247640186674816 --- # vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2879 - Accuracy: 0.9242 - Precision: 0.9296 - Recall: 0.9242 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2837 | 0.3333 | 100 | 0.5470 | 0.8333 | 0.8693 | 0.8333 | 0.8325 | | 0.1498 | 0.6667 | 200 | 0.4199 | 0.8658 | 0.8833 | 0.8658 | 0.8647 | | 0.0979 | 1.0 | 300 | 0.4712 | 0.8783 | 0.9015 | 0.8783 | 0.8799 | | 0.009 | 1.3333 | 400 | 0.4957 | 0.885 | 0.8933 | 0.885 | 0.8819 | | 0.0226 | 1.6667 | 500 | 0.2879 | 0.9242 | 0.9296 | 0.9242 | 0.9248 | | 0.0722 | 2.0 | 600 | 0.4449 | 0.8875 | 0.8906 | 0.8875 | 0.8869 | | 0.0043 | 2.3333 | 700 | 0.3699 | 0.9125 | 0.9221 | 0.9125 | 0.9104 | | 0.0678 | 2.6667 | 800 | 0.6081 | 0.8792 | 0.8872 | 0.8792 | 0.8760 | | 0.1178 | 3.0 | 900 | 0.5728 | 0.8767 | 0.8748 | 0.8767 | 0.8744 | | 0.0297 | 3.3333 | 1000 | 0.3977 | 0.9258 | 0.9267 | 0.9258 | 0.9257 | | 0.0813 | 3.6667 | 1100 | 1.1116 | 0.8283 | 0.8462 | 0.8283 | 0.8153 | | 0.0336 | 4.0 | 1200 | 0.9246 | 0.82 | 0.8215 | 0.82 | 0.8155 | | 0.0291 | 4.3333 | 1300 | 0.6674 | 0.8808 | 0.8980 | 0.8808 | 0.8819 | | 0.1018 | 4.6667 | 1400 | 0.7256 | 0.8667 | 0.8760 | 0.8667 | 0.8641 | | 0.0739 | 5.0 | 1500 | 0.4149 | 0.8908 | 0.9082 | 0.8908 | 0.8913 | | 0.0017 | 5.3333 | 1600 | 0.3553 | 0.9208 | 0.9291 | 0.9208 | 0.9219 | | 0.0011 | 5.6667 | 1700 | 0.3934 | 0.915 | 0.9188 | 0.915 | 0.9157 | | 0.0056 | 6.0 | 1800 | 0.8180 | 0.8725 | 0.9139 | 0.8725 | 0.8733 | | 0.001 | 6.3333 | 1900 | 0.3790 | 0.9225 | 0.9216 | 0.9225 | 0.9217 | | 0.0055 | 6.6667 | 2000 | 0.6404 | 0.88 | 0.8910 | 0.88 | 0.8765 | | 0.0007 | 7.0 | 2100 | 0.5133 | 0.9017 | 0.9073 | 0.9017 | 0.9023 | | 0.0009 | 7.3333 | 2200 | 0.4628 | 0.92 | 0.9296 | 0.92 | 0.9189 | | 0.0007 | 7.6667 | 2300 | 0.8405 | 0.8617 | 0.8744 | 0.8617 | 0.8581 | | 0.1144 | 8.0 | 2400 | 1.0096 | 0.8592 | 0.8954 | 0.8592 | 0.8567 | | 0.0007 | 8.3333 | 2500 | 0.6318 | 0.8983 | 0.9113 | 0.8983 | 0.8977 | | 0.0005 | 8.6667 | 2600 | 0.4929 | 0.9075 | 0.9135 | 0.9075 | 0.9076 | | 0.0013 | 9.0 | 2700 | 0.6148 | 0.8883 | 0.8955 | 0.8883 | 0.8866 | | 0.001 | 9.3333 | 2800 | 1.0043 | 0.8392 | 0.8538 | 0.8392 | 0.8355 | | 0.0004 | 9.6667 | 2900 | 0.9713 | 0.8425 | 0.8556 | 0.8425 | 0.8390 | | 0.0004 | 10.0 | 3000 | 0.9737 | 0.865 | 0.8977 | 0.865 | 0.8634 | | 0.0004 | 10.3333 | 3100 | 0.8766 | 0.8683 | 0.8835 | 0.8683 | 0.8673 | | 0.0004 | 10.6667 | 3200 | 0.8620 | 0.8683 | 0.8808 | 0.8683 | 0.8672 | | 0.0003 | 11.0 | 3300 | 0.8669 | 0.8675 | 0.8803 | 0.8675 | 0.8665 | | 0.0003 | 11.3333 | 3400 | 0.8712 | 0.8667 | 0.8789 | 0.8667 | 0.8656 | | 0.0003 | 11.6667 | 3500 | 0.8732 | 0.8675 | 0.8797 | 0.8675 | 0.8665 | | 0.0003 | 12.0 | 3600 | 0.8754 | 0.8658 | 0.8782 | 0.8658 | 0.8648 | | 0.0003 | 12.3333 | 3700 | 0.8775 | 0.8658 | 0.8782 | 0.8658 | 0.8648 | | 0.0003 | 12.6667 | 3800 | 0.8797 | 0.865 | 0.8772 | 0.865 | 0.8640 | | 0.0003 | 13.0 | 3900 | 0.8816 | 0.865 | 0.8772 | 0.865 | 0.8640 | | 0.0003 | 13.3333 | 4000 | 0.8835 | 0.865 | 0.8772 | 0.865 | 0.8640 | | 0.0003 | 13.6667 | 4100 | 0.8844 | 0.865 | 0.8769 | 0.865 | 0.8639 | | 0.0003 | 14.0 | 4200 | 0.8852 | 0.8658 | 0.8775 | 0.8658 | 0.8648 | | 0.0002 | 14.3333 | 4300 | 0.8859 | 0.8667 | 0.8780 | 0.8667 | 0.8655 | | 0.0002 | 14.6667 | 4400 | 0.8865 | 0.8675 | 0.8786 | 0.8675 | 0.8664 | | 0.0002 | 15.0 | 4500 | 0.8868 | 0.8675 | 0.8786 | 0.8675 | 0.8664 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0