--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SUR results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.745 - name: Precision type: precision value: 0.7537315160415208 - name: Recall type: recall value: 0.745 - name: F1 type: f1 value: 0.7066624397064813 --- # vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6379 - Accuracy: 0.745 - Precision: 0.7537 - Recall: 0.745 - F1: 0.7067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3911 | 0.3333 | 100 | 0.6379 | 0.745 | 0.7537 | 0.745 | 0.7067 | | 0.2601 | 0.6667 | 200 | 1.0005 | 0.6842 | 0.7312 | 0.6842 | 0.6523 | | 0.1349 | 1.0 | 300 | 0.6380 | 0.8533 | 0.8720 | 0.8533 | 0.8518 | | 0.0601 | 1.3333 | 400 | 1.1014 | 0.7217 | 0.7753 | 0.7217 | 0.7044 | | 0.2132 | 1.6667 | 500 | 0.7327 | 0.8208 | 0.8438 | 0.8208 | 0.8197 | | 0.0894 | 2.0 | 600 | 1.4871 | 0.7083 | 0.7449 | 0.7083 | 0.6682 | | 0.0135 | 2.3333 | 700 | 0.9952 | 0.7883 | 0.8495 | 0.7883 | 0.7799 | | 0.0042 | 2.6667 | 800 | 0.6547 | 0.8683 | 0.8729 | 0.8683 | 0.8679 | | 0.0037 | 3.0 | 900 | 0.7970 | 0.8367 | 0.8739 | 0.8367 | 0.8370 | | 0.0578 | 3.3333 | 1000 | 0.8231 | 0.845 | 0.8641 | 0.845 | 0.8436 | | 0.0019 | 3.6667 | 1100 | 0.7459 | 0.8667 | 0.8771 | 0.8667 | 0.8655 | | 0.2931 | 4.0 | 1200 | 0.9539 | 0.8292 | 0.8349 | 0.8292 | 0.8275 | | 0.0017 | 4.3333 | 1300 | 0.8095 | 0.8408 | 0.8607 | 0.8408 | 0.8413 | | 0.0018 | 4.6667 | 1400 | 0.7471 | 0.865 | 0.8690 | 0.865 | 0.8629 | | 0.0014 | 5.0 | 1500 | 1.0642 | 0.7925 | 0.8148 | 0.7925 | 0.7915 | | 0.0012 | 5.3333 | 1600 | 0.8130 | 0.8333 | 0.8372 | 0.8333 | 0.8334 | | 0.001 | 5.6667 | 1700 | 1.1121 | 0.8133 | 0.8222 | 0.8133 | 0.8113 | | 0.001 | 6.0 | 1800 | 0.7986 | 0.8475 | 0.8528 | 0.8475 | 0.8492 | | 0.0008 | 6.3333 | 1900 | 0.7908 | 0.8708 | 0.8928 | 0.8708 | 0.8718 | | 0.0007 | 6.6667 | 2000 | 0.7444 | 0.8842 | 0.8981 | 0.8842 | 0.8818 | | 0.0028 | 7.0 | 2100 | 0.7492 | 0.87 | 0.8749 | 0.87 | 0.8677 | | 0.0007 | 7.3333 | 2200 | 1.5649 | 0.7433 | 0.8440 | 0.7433 | 0.7117 | | 0.0007 | 7.6667 | 2300 | 0.8539 | 0.8492 | 0.8679 | 0.8492 | 0.8492 | | 0.0015 | 8.0 | 2400 | 0.8743 | 0.835 | 0.8553 | 0.835 | 0.8342 | | 0.0006 | 8.3333 | 2500 | 0.7659 | 0.8583 | 0.8608 | 0.8583 | 0.8569 | | 0.0005 | 8.6667 | 2600 | 0.7448 | 0.8642 | 0.8681 | 0.8642 | 0.8627 | | 0.0005 | 9.0 | 2700 | 0.7439 | 0.8683 | 0.8726 | 0.8683 | 0.8666 | | 0.0004 | 9.3333 | 2800 | 0.7444 | 0.8742 | 0.8807 | 0.8742 | 0.8725 | | 0.0004 | 9.6667 | 2900 | 0.7484 | 0.8725 | 0.8790 | 0.8725 | 0.8707 | | 0.0003 | 10.0 | 3000 | 0.7491 | 0.8708 | 0.8781 | 0.8708 | 0.8691 | | 0.0003 | 10.3333 | 3100 | 0.7509 | 0.8717 | 0.8788 | 0.8717 | 0.8699 | | 0.0003 | 10.6667 | 3200 | 0.7539 | 0.875 | 0.8827 | 0.875 | 0.8732 | | 0.0003 | 11.0 | 3300 | 0.7572 | 0.8775 | 0.8853 | 0.8775 | 0.8756 | | 0.0003 | 11.3333 | 3400 | 0.7598 | 0.8783 | 0.8866 | 0.8783 | 0.8765 | | 0.0003 | 11.6667 | 3500 | 0.7626 | 0.8792 | 0.8873 | 0.8792 | 0.8772 | | 0.0003 | 12.0 | 3600 | 0.7655 | 0.8792 | 0.8873 | 0.8792 | 0.8772 | | 0.0003 | 12.3333 | 3700 | 0.7682 | 0.8792 | 0.8873 | 0.8792 | 0.8772 | | 0.0003 | 12.6667 | 3800 | 0.7699 | 0.88 | 0.8880 | 0.88 | 0.8780 | | 0.0002 | 13.0 | 3900 | 0.7723 | 0.8808 | 0.8887 | 0.8808 | 0.8788 | | 0.0003 | 13.3333 | 4000 | 0.7747 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0003 | 13.6667 | 4100 | 0.7761 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 14.0 | 4200 | 0.7771 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 14.3333 | 4300 | 0.7778 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 14.6667 | 4400 | 0.7785 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 15.0 | 4500 | 0.7787 | 0.88 | 0.8881 | 0.88 | 0.8779 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0