Ishan0612 commited on
Commit
39c8619
·
verified ·
1 Parent(s): 33d49e6

Upload finalized BioBERT NER model with complete README and metadata

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: transformers
4
+ tags: [medical-ner, biobert, healthcare, disease-extraction, named-entity-recognition, huggingface, ncbi-disease-dataset]
5
+ ---
6
+
7
+ # BioBERT Medical NER Model
8
+
9
+ ## Model Description
10
+
11
+ Introducing **one of the strongest and most accurate medical NER models**, fine-tuned on BioBERT (`dmis-lab/biobert-base-cased-v1.1`) using the trusted **NCBI Disease dataset**.
12
+ It achieves an outstanding **98.79% accuracy** and an impressive **F1-score of 86.98%**, delivering high performance for disease extraction tasks.
13
+
14
+ Optimized for precise identification of **diseases**, **symptoms**, and **medical conditions** from clinical and biomedical texts.
15
+
16
+ ---
17
+
18
+ ## Model Performance
19
+
20
+ - **Precision:** 86.80%
21
+ - **Recall:** 91.39%
22
+ - **F1-Score:** 89.04%
23
+ - **Accuracy:** 98.64%
24
+
25
+ ✅ Trained for **5 epochs** on the NCBI Disease dataset.
26
+
27
+ ---
28
+
29
+ ## Intended Use
30
+
31
+ - Extract disease mentions from clinical and biomedical documents.
32
+ - Support healthcare AI systems and medical research automation.
33
+ - Not intended for clinical decision-making without human supervision.
34
+
35
+ ---
36
+
37
+ ## Training Data
38
+
39
+ - **Dataset:** NCBI Disease Dataset
40
+ - **Size:** 793 PubMed abstracts, 6,892 manually annotated disease mentions
41
+ - **Tagging Scheme:** BIO format (B-Disease, I-Disease, O)
42
+
43
+ ---
44
+
45
+ ## How to Use
46
+
47
+ ```python
48
+ from transformers import pipeline
49
+
50
+ nlp = pipeline(
51
+ "ner",
52
+ model="Ishan0612/biobert-ner-disease-ncbi",
53
+ tokenizer="Ishan0612/biobert-ner-disease-ncbi",
54
+ aggregation_strategy="simple"
55
+ )
56
+
57
+ text = "The patient has signs of diabetes mellitus and chronic obstructive pulmonary disease."
58
+
59
+ results = nlp(text)
60
+
61
+ for entity in results:
62
+ print(f"{entity['word']} ({entity['entity_group']}) - Confidence: {entity['score']:.2f}")
63
+ ```
64
+ ---
65
+
66
+ ## License
67
+
68
+ This model is licensed under the **Apache 2.0 License**, same as the original BioBERT (`dmis-lab/biobert-base-cased-v1.1`).
69
+
70
+ ---
71
+
72
+ ## Citation
73
+ @article{lee2020biobert,
74
+ title={BioBERT: a pre-trained biomedical language representation model for biomedical text mining},
75
+ author={Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and So, Chan Ho and Kang, Jaewoo},
76
+ journal={Bioinformatics},
77
+ volume={36},
78
+ number={4},
79
+ pages={1234--1240},
80
+ year={2020},
81
+ publisher={Oxford University Press}
82
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0,
19
+ "LABEL_1": 1,
20
+ "LABEL_2": 2
21
+ },
22
+ "layer_norm_eps": 1e-12,
23
+ "max_position_embeddings": 512,
24
+ "model_type": "bert",
25
+ "num_attention_heads": 12,
26
+ "num_hidden_layers": 12,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.51.3",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 28996
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24377fecb52b22a900b8a07a65170d27a465f0ede54585d6be7b5a9ff57034e5
3
+ size 430911284
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff