Upload finalized BioBERT NER model with complete README and metadata
Browse files- README.md +82 -0
- config.json +34 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
library_name: transformers
|
4 |
+
tags: [medical-ner, biobert, healthcare, disease-extraction, named-entity-recognition, huggingface, ncbi-disease-dataset]
|
5 |
+
---
|
6 |
+
|
7 |
+
# BioBERT Medical NER Model
|
8 |
+
|
9 |
+
## Model Description
|
10 |
+
|
11 |
+
Introducing **one of the strongest and most accurate medical NER models**, fine-tuned on BioBERT (`dmis-lab/biobert-base-cased-v1.1`) using the trusted **NCBI Disease dataset**.
|
12 |
+
It achieves an outstanding **98.79% accuracy** and an impressive **F1-score of 86.98%**, delivering high performance for disease extraction tasks.
|
13 |
+
|
14 |
+
Optimized for precise identification of **diseases**, **symptoms**, and **medical conditions** from clinical and biomedical texts.
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## Model Performance
|
19 |
+
|
20 |
+
- **Precision:** 86.80%
|
21 |
+
- **Recall:** 91.39%
|
22 |
+
- **F1-Score:** 89.04%
|
23 |
+
- **Accuracy:** 98.64%
|
24 |
+
|
25 |
+
✅ Trained for **5 epochs** on the NCBI Disease dataset.
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## Intended Use
|
30 |
+
|
31 |
+
- Extract disease mentions from clinical and biomedical documents.
|
32 |
+
- Support healthcare AI systems and medical research automation.
|
33 |
+
- Not intended for clinical decision-making without human supervision.
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## Training Data
|
38 |
+
|
39 |
+
- **Dataset:** NCBI Disease Dataset
|
40 |
+
- **Size:** 793 PubMed abstracts, 6,892 manually annotated disease mentions
|
41 |
+
- **Tagging Scheme:** BIO format (B-Disease, I-Disease, O)
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
## How to Use
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import pipeline
|
49 |
+
|
50 |
+
nlp = pipeline(
|
51 |
+
"ner",
|
52 |
+
model="Ishan0612/biobert-ner-disease-ncbi",
|
53 |
+
tokenizer="Ishan0612/biobert-ner-disease-ncbi",
|
54 |
+
aggregation_strategy="simple"
|
55 |
+
)
|
56 |
+
|
57 |
+
text = "The patient has signs of diabetes mellitus and chronic obstructive pulmonary disease."
|
58 |
+
|
59 |
+
results = nlp(text)
|
60 |
+
|
61 |
+
for entity in results:
|
62 |
+
print(f"{entity['word']} ({entity['entity_group']}) - Confidence: {entity['score']:.2f}")
|
63 |
+
```
|
64 |
+
---
|
65 |
+
|
66 |
+
## License
|
67 |
+
|
68 |
+
This model is licensed under the **Apache 2.0 License**, same as the original BioBERT (`dmis-lab/biobert-base-cased-v1.1`).
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
@article{lee2020biobert,
|
74 |
+
title={BioBERT: a pre-trained biomedical language representation model for biomedical text mining},
|
75 |
+
author={Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and So, Chan Ho and Kang, Jaewoo},
|
76 |
+
journal={Bioinformatics},
|
77 |
+
volume={36},
|
78 |
+
number={4},
|
79 |
+
pages={1234--1240},
|
80 |
+
year={2020},
|
81 |
+
publisher={Oxford University Press}
|
82 |
+
}
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0,
|
19 |
+
"LABEL_1": 1,
|
20 |
+
"LABEL_2": 2
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_hidden_layers": 12,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.51.3",
|
31 |
+
"type_vocab_size": 2,
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 28996
|
34 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24377fecb52b22a900b8a07a65170d27a465f0ede54585d6be7b5a9ff57034e5
|
3 |
+
size 430911284
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|