Commit
·
ba7e48f
1
Parent(s):
c99e67a
Create README.md
Browse filesSigned-off-by: jinjieyuan <[email protected]>
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
---
|
5 |
+
|
6 |
+
# LoNAS Model Card: lonas-bert-base-glue
|
7 |
+
|
8 |
+
The super-networks fine-tuned on BERT-base with [GLUE benchmark](https://gluebenchmark.com/) using LoNAS.
|
9 |
+
|
10 |
+
## Model Details
|
11 |
+
|
12 |
+
### Information
|
13 |
+
|
14 |
+
- **Model name:** lonas-bert-base-glue
|
15 |
+
- **Base model:** [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
|
16 |
+
- **Subnetwork version:** Super-network
|
17 |
+
- **NNCF Configurations:** [nncf_config/glue](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/glue)
|
18 |
+
|
19 |
+
### Adapter Configuration
|
20 |
+
|
21 |
+
- **LoRA rank:** 8
|
22 |
+
- **LoRA alpha:** 16
|
23 |
+
- **LoRA target modules:** query, value
|
24 |
+
|
25 |
+
|
26 |
+
### Training and Evaluation
|
27 |
+
|
28 |
+
[GLUE benchmark](https://gluebenchmark.com/)
|
29 |
+
|
30 |
+
### Training Hyperparameters
|
31 |
+
|
32 |
+
| Task | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI |
|
33 |
+
|------------|------|------|-------|------|-------|------|------|------|
|
34 |
+
| Epoch | 80 | 35 | 60 | 80 | 60 | 80 | 60 | 40 |
|
35 |
+
| Batch size | 32 | 32 | 64 | 64 | 64 | 64 | 64 | 64 |
|
36 |
+
| Learning rate | 3e-4 | 5e-4 | 5e-4 | 3e-4 | 3e-4 | 4e-4 | 3e-4 | 4e-4 |
|
37 |
+
| Max length | 128 | 128 | 128 | 128 | 128 | 256 | 128 | 128 |
|
38 |
+
|
39 |
+
## How to use
|
40 |
+
|
41 |
+
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands):
|
42 |
+
```bash
|
43 |
+
CUDA_VISIBLE_DEVICES=${DEVICES} python run_glue.py \
|
44 |
+
--task_name ${TASK} \
|
45 |
+
--model_name_or_path bert-base-uncased \
|
46 |
+
--do_eval \
|
47 |
+
--do_search \
|
48 |
+
--per_device_eval_batch_size 64 \
|
49 |
+
--max_seq_length ${MAX_LENGTH} \
|
50 |
+
--lora \
|
51 |
+
--lora_weights lonas-bert-base-glue/lonas-bert-base-${TASK} \
|
52 |
+
--nncf_config nncf_config/glue/nncf_lonas_bert_base_${TASK}.json \
|
53 |
+
--do_test \
|
54 |
+
--output_dir lonas-bert-base-glue/lonas-bert-base-${TASK}/results
|
55 |
+
```
|
56 |
+
|
57 |
+
## Evaluation Results
|
58 |
+
|
59 |
+
Results of the optimal sub-network discoverd from the super-network:
|
60 |
+
|
61 |
+
| Method | Trainable Parameter Ratio | GFLOPs | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI | AVG |
|
62 |
+
|-------------|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
|
63 |
+
| LoRA | 0.27% | 11.2 | 65.85 | 84.46 | 88.73 | 57.58 | 92.06 | 90.62 | 89.41 | 83.00 | 81.46 |
|
64 |
+
| **LoNAS** | 0.27% | **8.0** | 70.76 | 88.97 | 88.28 | 61.12 | 93.23 | 91.21 | 88.55 | 82.00 | **83.02** |
|
65 |
+
|
66 |
+
|
67 |
+
## Model Sources
|
68 |
+
|
69 |
+
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
|
70 |
+
- **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
|
74 |
+
```bibtex
|
75 |
+
@article{munoz2024lonas,
|
76 |
+
title = {LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
|
77 |
+
author={J. Pablo Munoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
|
78 |
+
journal={},
|
79 |
+
year={2024}
|
80 |
+
}
|
81 |
+
```
|
82 |
+
|
83 |
+
## License
|
84 |
+
|
85 |
+
Apache-2.0
|