arisha07 commited on
Commit
ee74271
1 Parent(s): e75e292

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ unet_int8_NPU.blob filter=lfs diff=lfs merge=lfs -text
text_encoder.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f245795911e496f451a01e1a5de70578753c985ed76ffa302966d2e716d2b8d0
3
+ size 246133100
text_encoder.xml ADDED
The diff for this file is too large to render. See raw diff
 
unet_int8.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed2e644593ed2b69a293e70c03d20dcb5f14efe8cb2c2ac33ede23bf4bf944c
3
+ size 862161700
unet_int8.xml ADDED
The diff for this file is too large to render. See raw diff
 
unet_int8_NPU.blob ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99d106dc21f56e06633da049f8a7242e73233d2c9d637e37fc81d819bbbcdb6
3
+ size 924722192
unet_time_proj.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e19be1895dd6f7971ec7f9439039e16dffba14146b505cd074ba445a8deb36d
3
+ size 863456400
unet_time_proj.xml ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" ?>
2
+ <net name="torch_jit" version="11">
3
+ <layers>
4
+ <layer id="64" name="254112541580455" type="Const" version="opset1">
5
+ <data offset="943456" size="4" shape="1,1" element_type="f32"/>
6
+ <output>
7
+ <port id="0" precision="FP32">
8
+ <dim>1</dim>
9
+ <dim>1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="65" name="254122541671656" type="Const" version="opset1">
14
+ <data offset="943460" size="4" shape="1,1" element_type="f32"/>
15
+ <output>
16
+ <port id="0" precision="FP32">
17
+ <dim>1</dim>
18
+ <dim>1</dim>
19
+ </port>
20
+ </output>
21
+ </layer>
22
+ <layer id="66" name="254132541774728" type="Const" version="opset1">
23
+ <data offset="943456" size="4" shape="1,1" element_type="f32"/>
24
+ <output>
25
+ <port id="0" precision="FP32">
26
+ <dim>1</dim>
27
+ <dim>1</dim>
28
+ </port>
29
+ </output>
30
+ </layer>
31
+ <layer id="67" name="254142541871665" type="Const" version="opset1">
32
+ <data offset="943460" size="4" shape="1,1" element_type="f32"/>
33
+ <output>
34
+ <port id="0" precision="FP32">
35
+ <dim>1</dim>
36
+ <dim>1</dim>
37
+ </port>
38
+ </output>
39
+ </layer>
40
+ <layer id="75" name="cosine_t" type="Parameter" version="opset1">
41
+ <data shape="1,160" element_type="f32"/>
42
+ <output>
43
+ <port id="0" precision="FP32" names="cosine_t">
44
+ <dim>1</dim>
45
+ <dim>160</dim>
46
+ <rt_info/>
47
+ </port>
48
+ </output>
49
+ </layer>
50
+ <layer id="81" name="sine_t" type="Parameter" version="opset1">
51
+ <data shape="1,160" element_type="f32"/>
52
+ <output>
53
+ <port id="0" precision="FP32" names="sine_t">
54
+ <dim>1</dim>
55
+ <dim>160</dim>
56
+ <rt_info/>
57
+ </port>
58
+ </output>
59
+ </layer>
60
+ <layer id="76" name="/time_proj/Concat/fq_input_1" type="FakeQuantize" version="opset1">
61
+ <data levels="256" auto_broadcast="numpy"/>
62
+ <input>
63
+ <port id="0">
64
+ <dim>1</dim>
65
+ <dim>160</dim>
66
+ </port>
67
+ <port id="1">
68
+ <dim>1</dim>
69
+ <dim>1</dim>
70
+ </port>
71
+ <port id="2">
72
+ <dim>1</dim>
73
+ <dim>1</dim>
74
+ </port>
75
+ <port id="3">
76
+ <dim>1</dim>
77
+ <dim>1</dim>
78
+ </port>
79
+ <port id="4">
80
+ <dim>1</dim>
81
+ <dim>1</dim>
82
+ </port>
83
+ </input>
84
+ <output>
85
+ <port id="5" precision="FP32">
86
+ <dim>1</dim>
87
+ <dim>160</dim>
88
+ </port>
89
+ </output>
90
+ </layer>
91
+ <layer id="77" name="254012540580581" type="Const" version="opset1">
92
+ <data offset="943456" size="4" shape="1,1" element_type="f32"/>
93
+ <output>
94
+ <port id="0" precision="FP32">
95
+ <dim>1</dim>
96
+ <dim>1</dim>
97
+ </port>
98
+ </output>
99
+ </layer>
100
+ <layer id="78" name="254022540678028" type="Const" version="opset1">
101
+ <data offset="943460" size="4" shape="1,1" element_type="f32"/>
102
+ <output>
103
+ <port id="0" precision="FP32">
104
+ <dim>1</dim>
105
+ <dim>1</dim>
106
+ </port>
107
+ </output>
108
+ </layer>
109
+ <layer id="79" name="254032540779540" type="Const" version="opset1">
110
+ <data offset="943456" size="4" shape="1,1" element_type="f32"/>
111
+ <output>
112
+ <port id="0" precision="FP32">
113
+ <dim>1</dim>
114
+ <dim>1</dim>
115
+ </port>
116
+ </output>
117
+ </layer>
118
+ <layer id="80" name="254042540873978" type="Const" version="opset1">
119
+ <data offset="943460" size="4" shape="1,1" element_type="f32"/>
120
+ <output>
121
+ <port id="0" precision="FP32">
122
+ <dim>1</dim>
123
+ <dim>1</dim>
124
+ </port>
125
+ </output>
126
+ </layer>
127
+ <layer id="82" name="/time_proj/Concat/fq_input_0" type="FakeQuantize" version="opset1">
128
+ <data levels="256" auto_broadcast="numpy"/>
129
+ <input>
130
+ <port id="0">
131
+ <dim>1</dim>
132
+ <dim>160</dim>
133
+ </port>
134
+ <port id="1">
135
+ <dim>1</dim>
136
+ <dim>1</dim>
137
+ </port>
138
+ <port id="2">
139
+ <dim>1</dim>
140
+ <dim>1</dim>
141
+ </port>
142
+ <port id="3">
143
+ <dim>1</dim>
144
+ <dim>1</dim>
145
+ </port>
146
+ <port id="4">
147
+ <dim>1</dim>
148
+ <dim>1</dim>
149
+ </port>
150
+ </input>
151
+ <output>
152
+ <port id="5" precision="FP32">
153
+ <dim>1</dim>
154
+ <dim>160</dim>
155
+ </port>
156
+ </output>
157
+ </layer>
158
+ <layer id="83" name="/time_proj/Concat" type="Concat" version="opset1">
159
+ <data axis="1"/>
160
+ <input>
161
+ <port id="0">
162
+ <dim>1</dim>
163
+ <dim>160</dim>
164
+ </port>
165
+ <port id="1">
166
+ <dim>1</dim>
167
+ <dim>160</dim>
168
+ </port>
169
+ </input>
170
+ <output>
171
+ <port id="2" precision="FP32" names="/time_proj/Concat_output_0">
172
+ <dim>1</dim>
173
+ <dim>320</dim>
174
+ </port>
175
+ </output>
176
+ </layer>
177
+ <layer id="84" name="Constant_639583717" type="Const" version="opset1">
178
+ <data offset="944112" size="16" shape="2" element_type="i64"/>
179
+ <output>
180
+ <port id="0" precision="I64">
181
+ <dim>2</dim>
182
+ </port>
183
+ </output>
184
+ </layer>
185
+ <layer id="85" name="Constant_639613718" type="Const" version="opset1">
186
+ <data offset="944128" size="16" shape="2" element_type="i64"/>
187
+ <output>
188
+ <port id="0" precision="I64">
189
+ <dim>2</dim>
190
+ </port>
191
+ </output>
192
+ </layer>
193
+ <layer id="86" name="Constant_639643719" type="Const" version="opset1">
194
+ <data offset="944144" size="16" shape="2" element_type="i64"/>
195
+ <output>
196
+ <port id="0" precision="I64">
197
+ <dim>2</dim>
198
+ </port>
199
+ </output>
200
+ </layer>
201
+ <layer id="87" name="/time_proj/Slice_1" type="StridedSlice" version="opset1">
202
+ <data begin_mask="1,0" end_mask="1,0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask=""/>
203
+ <input>
204
+ <port id="0">
205
+ <dim>1</dim>
206
+ <dim>320</dim>
207
+ </port>
208
+ <port id="1">
209
+ <dim>2</dim>
210
+ </port>
211
+ <port id="2">
212
+ <dim>2</dim>
213
+ </port>
214
+ <port id="3">
215
+ <dim>2</dim>
216
+ </port>
217
+ </input>
218
+ <output>
219
+ <port id="4" precision="FP32" names="/time_proj/Slice_1_output_0">
220
+ <dim>1</dim>
221
+ <dim>160</dim>
222
+ </port>
223
+ </output>
224
+ </layer>
225
+ <layer id="88" name="Constant_639463713" type="Const" version="opset1">
226
+ <data offset="944128" size="16" shape="2" element_type="i64"/>
227
+ <output>
228
+ <port id="0" precision="I64">
229
+ <dim>2</dim>
230
+ </port>
231
+ </output>
232
+ </layer>
233
+ <layer id="89" name="Constant_639493714" type="Const" version="opset1">
234
+ <data offset="944160" size="16" shape="2" element_type="i64"/>
235
+ <output>
236
+ <port id="0" precision="I64">
237
+ <dim>2</dim>
238
+ </port>
239
+ </output>
240
+ </layer>
241
+ <layer id="90" name="Constant_639523715" type="Const" version="opset1">
242
+ <data offset="944144" size="16" shape="2" element_type="i64"/>
243
+ <output>
244
+ <port id="0" precision="I64">
245
+ <dim>2</dim>
246
+ </port>
247
+ </output>
248
+ </layer>
249
+ <layer id="91" name="/time_proj/Slice" type="StridedSlice" version="opset1">
250
+ <data begin_mask="1,0" end_mask="1,0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask=""/>
251
+ <input>
252
+ <port id="0">
253
+ <dim>1</dim>
254
+ <dim>320</dim>
255
+ </port>
256
+ <port id="1">
257
+ <dim>2</dim>
258
+ </port>
259
+ <port id="2">
260
+ <dim>2</dim>
261
+ </port>
262
+ <port id="3">
263
+ <dim>2</dim>
264
+ </port>
265
+ </input>
266
+ <output>
267
+ <port id="4" precision="FP32" names="/time_proj/Slice_output_0">
268
+ <dim>1</dim>
269
+ <dim>160</dim>
270
+ </port>
271
+ </output>
272
+ </layer>
273
+ <layer id="92" name="/time_proj/Concat_1" type="Concat" version="opset1">
274
+ <data axis="1"/>
275
+ <input>
276
+ <port id="0">
277
+ <dim>1</dim>
278
+ <dim>160</dim>
279
+ </port>
280
+ <port id="1">
281
+ <dim>1</dim>
282
+ <dim>160</dim>
283
+ </port>
284
+ </input>
285
+ <output>
286
+ <port id="2" precision="FP32" names="/Cast_output_0,/time_proj/Concat_1_output_0">
287
+ <dim>1</dim>
288
+ <dim>320</dim>
289
+ </port>
290
+ </output>
291
+ </layer>
292
+ <layer id="93" name="time_embedding.linear_1.weight372242271/quantized4854873900" type="Const" version="opset1">
293
+ <data offset="944176" size="409600" shape="1280,320" element_type="i8"/>
294
+ <output>
295
+ <port id="0" precision="I8">
296
+ <dim>1280</dim>
297
+ <dim>320</dim>
298
+ </port>
299
+ </output>
300
+ </layer>
301
+ <layer id="94" name="time_embedding.linear_1.weight372242271/quantized/to_f32" type="Convert" version="opset1">
302
+ <data destination_type="f32"/>
303
+ <input>
304
+ <port id="0">
305
+ <dim>1280</dim>
306
+ <dim>320</dim>
307
+ </port>
308
+ </input>
309
+ <output>
310
+ <port id="1" precision="FP32">
311
+ <dim>1280</dim>
312
+ <dim>320</dim>
313
+ </port>
314
+ </output>
315
+ </layer>
316
+ <layer id="95" name="/time_embedding/linear_1/Gemm/WithoutBiases/fq_weights_1/zero_point4856772904" type="Const" version="opset1">
317
+ <data offset="1353776" size="5120" shape="1280,1" element_type="f32"/>
318
+ <output>
319
+ <port id="0" precision="FP32">
320
+ <dim>1280</dim>
321
+ <dim>1</dim>
322
+ </port>
323
+ </output>
324
+ </layer>
325
+ <layer id="96" name="/time_embedding/linear_1/Gemm/WithoutBiases/fq_weights_1/minus_zp" type="Subtract" version="opset1">
326
+ <data auto_broadcast="numpy"/>
327
+ <input>
328
+ <port id="0">
329
+ <dim>1280</dim>
330
+ <dim>320</dim>
331
+ </port>
332
+ <port id="1">
333
+ <dim>1280</dim>
334
+ <dim>1</dim>
335
+ </port>
336
+ </input>
337
+ <output>
338
+ <port id="2" precision="FP32">
339
+ <dim>1280</dim>
340
+ <dim>320</dim>
341
+ </port>
342
+ </output>
343
+ </layer>
344
+ <layer id="97" name="/time_embedding/linear_1/Gemm/WithoutBiases/fq_weights_1/scale4855681214" type="Const" version="opset1">
345
+ <data offset="1358896" size="5120" shape="1280,1" element_type="f32"/>
346
+ <output>
347
+ <port id="0" precision="FP32">
348
+ <dim>1280</dim>
349
+ <dim>1</dim>
350
+ </port>
351
+ </output>
352
+ </layer>
353
+ <layer id="98" name="/time_embedding/linear_1/Gemm/WithoutBiases/fq_weights_1/mulpiply_by_scale" type="Multiply" version="opset1">
354
+ <data auto_broadcast="numpy"/>
355
+ <input>
356
+ <port id="0">
357
+ <dim>1280</dim>
358
+ <dim>320</dim>
359
+ </port>
360
+ <port id="1">
361
+ <dim>1280</dim>
362
+ <dim>1</dim>
363
+ </port>
364
+ </input>
365
+ <output>
366
+ <port id="2" precision="FP32">
367
+ <dim>1280</dim>
368
+ <dim>320</dim>
369
+ </port>
370
+ </output>
371
+ </layer>
372
+ <layer id="99" name="/time_embedding/linear_1/Gemm/WithoutBiases" type="MatMul" version="opset1">
373
+ <data transpose_a="false" transpose_b="true"/>
374
+ <input>
375
+ <port id="0">
376
+ <dim>1</dim>
377
+ <dim>320</dim>
378
+ </port>
379
+ <port id="1">
380
+ <dim>1280</dim>
381
+ <dim>320</dim>
382
+ </port>
383
+ </input>
384
+ <output>
385
+ <port id="2" precision="FP32">
386
+ <dim>1</dim>
387
+ <dim>1280</dim>
388
+ </port>
389
+ </output>
390
+ </layer>
391
+ <layer id="100" name="Constant_74927372472532" type="Const" version="opset1">
392
+ <data offset="1364016" size="5120" shape="1,1280" element_type="f32"/>
393
+ <output>
394
+ <port id="0" precision="FP32">
395
+ <dim>1</dim>
396
+ <dim>1280</dim>
397
+ </port>
398
+ </output>
399
+ </layer>
400
+ <layer id="101" name="/time_embedding/linear_1/Gemm" type="Add" version="opset1">
401
+ <data auto_broadcast="numpy"/>
402
+ <input>
403
+ <port id="0">
404
+ <dim>1</dim>
405
+ <dim>1280</dim>
406
+ </port>
407
+ <port id="1">
408
+ <dim>1</dim>
409
+ <dim>1280</dim>
410
+ </port>
411
+ </input>
412
+ <output>
413
+ <port id="2" precision="FP32" names="/time_embedding/linear_1/Gemm_output_0">
414
+ <dim>1</dim>
415
+ <dim>1280</dim>
416
+ </port>
417
+ </output>
418
+ </layer>
419
+ <layer id="102" name="_time_embedding_linear_1_Gemm_output0" type="Result" version="opset1">
420
+ <input>
421
+ <port id="0" precision="FP32">
422
+ <dim>1</dim>
423
+ <dim>1280</dim>
424
+ </port>
425
+ </input>
426
+ </layer>
427
+ </layers>
428
+ <edges>
429
+ <edge from-layer="75" from-port="0" to-layer="76" to-port="0"/>
430
+ <edge from-layer="64" from-port="0" to-layer="76" to-port="1"/>
431
+ <edge from-layer="65" from-port="0" to-layer="76" to-port="2"/>
432
+ <edge from-layer="66" from-port="0" to-layer="76" to-port="3"/>
433
+ <edge from-layer="67" from-port="0" to-layer="76" to-port="4"/>
434
+ <edge from-layer="81" from-port="0" to-layer="82" to-port="0"/>
435
+ <edge from-layer="77" from-port="0" to-layer="82" to-port="1"/>
436
+ <edge from-layer="78" from-port="0" to-layer="82" to-port="2"/>
437
+ <edge from-layer="79" from-port="0" to-layer="82" to-port="3"/>
438
+ <edge from-layer="80" from-port="0" to-layer="82" to-port="4"/>
439
+ <edge from-layer="76" from-port="5" to-layer="83" to-port="1"/>
440
+ <edge from-layer="82" from-port="5" to-layer="83" to-port="0"/>
441
+ <edge from-layer="83" from-port="2" to-layer="87" to-port="0"/>
442
+ <edge from-layer="83" from-port="2" to-layer="91" to-port="0"/>
443
+ <edge from-layer="84" from-port="0" to-layer="87" to-port="1"/>
444
+ <edge from-layer="85" from-port="0" to-layer="87" to-port="2"/>
445
+ <edge from-layer="86" from-port="0" to-layer="87" to-port="3"/>
446
+ <edge from-layer="88" from-port="0" to-layer="91" to-port="1"/>
447
+ <edge from-layer="89" from-port="0" to-layer="91" to-port="2"/>
448
+ <edge from-layer="90" from-port="0" to-layer="91" to-port="3"/>
449
+ <edge from-layer="91" from-port="4" to-layer="92" to-port="0"/>
450
+ <edge from-layer="87" from-port="4" to-layer="92" to-port="1"/>
451
+ <edge from-layer="92" from-port="2" to-layer="99" to-port="0"/>
452
+ <edge from-layer="93" from-port="0" to-layer="94" to-port="0"/>
453
+ <edge from-layer="94" from-port="1" to-layer="96" to-port="0"/>
454
+ <edge from-layer="95" from-port="0" to-layer="96" to-port="1"/>
455
+ <edge from-layer="96" from-port="2" to-layer="98" to-port="0"/>
456
+ <edge from-layer="97" from-port="0" to-layer="98" to-port="1"/>
457
+ <edge from-layer="98" from-port="2" to-layer="99" to-port="1"/>
458
+ <edge from-layer="99" from-port="2" to-layer="101" to-port="0"/>
459
+ <edge from-layer="100" from-port="0" to-layer="101" to-port="1"/>
460
+ <edge from-layer="101" from-port="2" to-layer="102" to-port="0"/>
461
+ </edges>
462
+ <rt_info>
463
+ <MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3"/>
464
+ <Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3"/>
465
+ <conversion_parameters>
466
+ <framework value="onnx"/>
467
+ <input_model value="DIR/unet.onnx"/>
468
+ <model_name value="unet"/>
469
+ <output_dir value="DIR"/>
470
+ </conversion_parameters>
471
+ <legacy_frontend value="False"/>
472
+ </rt_info>
473
+ <quantization_parameters>
474
+ <config/>
475
+ <version value="{}"/>
476
+ <cli_params value="{}"/>
477
+ </quantization_parameters>
478
+ </net>
vae_decoder.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:907ab331d35ce61c6732a0802372d1f809e1dea27184c7297277d743cf6ca206
3
+ size 98980680
vae_decoder.xml ADDED
The diff for this file is too large to render. See raw diff
 
vae_encoder.xml ADDED
The diff for this file is too large to render. See raw diff