Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
---
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
|
|
4 |
---
|
|
|
|
|
5 |
This is an example model demonstrating how to run the AutoRound format for a visual language model on vLLM. Some visual modules have been quantized to 8-bit precision.
|
6 |
|
7 |
-
this pr https://github.com/vllm-project/vllm/pull/21802 is required.
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
~~~bash
|
11 |
vllm serve Intel/Qwen2.5-VL-7B-Instruct-int4-mixed-AutoRound --dtype bfloat16 --port 8001 --max-model-len 10000
|
@@ -33,5 +39,37 @@ curl --noproxy '*' http://localhost:8001/v1/chat/completions -H "Content-Typ
|
|
33 |
],
|
34 |
"max_tokens": 512
|
35 |
}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
37 |
~~~
|
|
|
1 |
---
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
4 |
+
license: apache-2.0
|
5 |
---
|
6 |
+
|
7 |
+
## Model Details
|
8 |
This is an example model demonstrating how to run the AutoRound format for a visual language model on vLLM. Some visual modules have been quantized to 8-bit precision.
|
9 |
|
|
|
10 |
|
11 |
+
## Run The Model
|
12 |
+
|
13 |
+
|
14 |
+
this pr https://github.com/vllm-project/vllm/pull/21802 is required.
|
15 |
|
16 |
~~~bash
|
17 |
vllm serve Intel/Qwen2.5-VL-7B-Instruct-int4-mixed-AutoRound --dtype bfloat16 --port 8001 --max-model-len 10000
|
|
|
39 |
],
|
40 |
"max_tokens": 512
|
41 |
}'
|
42 |
+
~~~
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
## Generate the model
|
47 |
+
|
48 |
+
~~~python
|
49 |
+
import torch
|
50 |
+
from auto_round import AutoRound, AutoRoundMLLM
|
51 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
52 |
+
|
53 |
+
model_name = "Qwen/Qwen2.5-VL-7B-Instruct/"
|
54 |
+
|
55 |
+
# default: Load the model on the available device(s)
|
56 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
57 |
+
model_name, torch_dtype="auto", device_map="auto"
|
58 |
+
)
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
|
62 |
+
processor = AutoProcessor.from_pretrained(model_name,trust_remote_code=True)
|
63 |
+
layer_config = {}
|
64 |
+
for n, m in model.named_modules():
|
65 |
+
if "visual" in n:
|
66 |
+
if not isinstance(m, torch.nn.Linear):
|
67 |
+
continue
|
68 |
+
if "mlp.gate_proj" in n or "mlp.down_proj" in n or "mlp.up_proj" in n:
|
69 |
+
layer_config[n] = {"bits": 16}
|
70 |
+
else:
|
71 |
+
layer_config[n] = {"bits": 8}
|
72 |
|
73 |
+
autoround = AutoRoundMLLM(model, tokenizer, processor=processor, iters=200, group_size=128,layer_config=layer_config)
|
74 |
+
autoround.quantize_and_save("./Qwen2.5-VL-7B-Instruct-autoround)
|
75 |
~~~
|