|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
model_name = "synCAI-144k-gpt2.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
def generate_text(prompt, model, tokenizer, device, max_length=100, temperature=0.7, top_p=0.9, top_k=50): |
|
try: |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
|
|
|
|
outputs = model.generate( |
|
inputs['input_ids'], |
|
max_length=max_length, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k |
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_text |
|
except Exception as e: |
|
print(f"Error generating text for prompt '{prompt}': {e}") |
|
return None |
|
|
|
|
|
input_prompts = [ |
|
"Explain the significance of the project:", |
|
"What methodologies were used in the research?", |
|
"What are the future implications of the findings?" |
|
] |
|
|
|
|
|
for prompt in input_prompts: |
|
generated_text = generate_text(prompt, model, tokenizer, device) |
|
if generated_text: |
|
print(f"Prompt: {prompt}") |
|
print(f"Generated Text: {generated_text}\n") |
|
|