InfiMed-Foundation-4B / InfiMed.py
TIM
update read model
a1b4f6c
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import os
from accelerate import PartialState
import PIL
from transformers import PreTrainedModel, PretrainedConfig, GenerationConfig, AutoTokenizer, LlamaTokenizerFast
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers import Qwen3ForCausalLM, SiglipImageProcessor
from safetensors.torch import load_file
from transformers.modeling_outputs import CausalLMOutputWithPast
from modeling_siglip import SiglipVisionModel
from configuration_siglip import SiglipVisionConfig
from configuration_qwen3 import Qwen3Config
from abc import ABC, abstractmethod
from einops import rearrange
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
class PromptBuilder(ABC):
def __init__(self, system_prompt: Optional[str] = None) -> None:
# Only some models define a system prompt => let subclasses handle this logic!
self.system_prompt = system_prompt
@abstractmethod
def add_turn(self, role: str, message: str) -> str: ...
@abstractmethod
def get_potential_prompt(self, user_msg: str) -> None: ...
@abstractmethod
def get_prompt(self) -> str: ...
class Qwen3PromptBuilder(PromptBuilder):
def __init__(self, system_prompt: Optional[str] = None) -> None:
super().__init__(system_prompt)
self.system_prompt = "<s><|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
self.bos, self.eos = "<s>", "<|im_end|>"
# Get role-specific "wrap" functions
self.wrap_human = lambda msg: f"<|im_start|>user\n{msg}<|im_end|>assistant\n"
self.wrap_gpt = lambda msg: f"{msg if msg != '' else ' '}{self.eos}\n"
# === `self.prompt` gets built up over multiple turns ===
self.prompt, self.turn_count = "", 0
def add_turn(self, role: str, message: str) -> str:
# assert (role == "human") if (self.turn_count % 2 == 0) else (role == "gpt")
message = message.strip() #.replace("<image>", "").strip()
# Special Handling for "system" prompt (turn_count == 0)
if self.turn_count == 0:
sys_message = self.system_prompt + self.wrap_human(message)
wrapped_message = sys_message
elif (self.turn_count % 2) == 0:
human_message = self.wrap_human(message)
wrapped_message = human_message
else:
gpt_message = self.wrap_gpt(message)
wrapped_message = gpt_message
# Update Prompt
self.prompt += wrapped_message
# Bump Turn Counter
self.turn_count += 1
# Return "wrapped_message" (effective string added to context)
return wrapped_message
def get_potential_prompt(self, message: str) -> None:
# Assumes that it's always the user's (human's) turn!
prompt_copy = str(self.prompt)
# Special Handling for "system" prompt (turn_count == 0)
if self.turn_count == 0:
sys_message = self.system_prompt + self.wrap_human(message)
prompt_copy += sys_message
else:
human_message = self.wrap_human(message)
prompt_copy += human_message
# return prompt_copy.removeprefix(self.bos).rstrip()
return prompt_copy.rstrip()
def get_prompt(self) -> str:
# Remove prefix <bos> (if exists) because it gets auto-inserted by tokenizer!
# return self.prompt.removeprefix(self.bos).rstrip()
return self.prompt.rstrip()
class InfiMedConfig(PretrainedConfig):
def __init__(
self,
vision_config=None,
llm_config=None,
run_dir: str = None,
load_precision: str = "bf16",
max_length: int = 128,
temperature: float = 1.0,
**kwargs
):
if vision_config is None:
vision_config = {}
print(
'vision_config is None. Initializing the SiglipVisionConfig with default values.')
if llm_config is None:
llm_config = {'architectures': ['Qwen3ForCausalLM']}
print(
'llm_config is None. Initializing the Qwen3Config config with default values')
self.vision_config = SiglipVisionConfig(**vision_config)
if llm_config['architectures'][0] == 'Qwen3ForCausalLM':
self.llm_config = Qwen3Config(**llm_config)
else:
raise ValueError('Unsupported architecture: {}'.format(
llm_config['architectures'][0]))
self.run_dir = run_dir
self.load_precision = load_precision
self.max_length = max_length
self.temperature = temperature
super().__init__(**kwargs)
class AvgPoolProjector(nn.Module):
def __init__(
self,
layer_num: int = 2,
query_num: int = 144,
mm_hidden_size: int = 1024,
llm_hidden_size: int = 4096,
):
super().__init__()
self.layer_num = layer_num
self.query_num = query_num
self.mm_hidden_size = mm_hidden_size
self.llm_hidden_size = llm_hidden_size
self.build_net()
def build_net(self):
hw = int(self.query_num ** 0.5)
sampler = nn.AdaptiveAvgPool2d((hw, hw))
self.sampler = sampler
modules = [nn.Linear(self.mm_hidden_size, self.llm_hidden_size)]
for _ in range(1, self.layer_num):
modules.append(nn.GELU())
modules.append(nn.Linear(self.llm_hidden_size, self.llm_hidden_size))
self.mlp_projector = nn.Sequential(*modules)
print(f"patch size {hw} average pooling layer initialized")
def forward(self, visual_feat: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, h_dim = visual_feat.shape
hw = int(seq_len ** 0.5)
shaped_visual_feat = rearrange(visual_feat, "b (h w) d -> b d h w", h=hw, w=hw)
pooled_visual_feat = self.sampler(shaped_visual_feat)
reshaped_visual_feat = rearrange(pooled_visual_feat, "b d h w -> b (h w) d")
output_feat = self.mlp_projector(reshaped_visual_feat)
return output_feat
class InfiMed(PreTrainedModel):
config_class = InfiMedConfig
def __init__(self, config: InfiMedConfig, vision_model=None, language_model=None):
super().__init__(config)
self.run_dir = Path(config.run_dir) if config.run_dir else None
self.model_dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[config.load_precision]
self.distributed_state = PartialState()
self.max_new_tokens = config.max_length
self.temperature = config.temperature
self.top_p = config.top_p
self.repetition_penalty = config.repetition_penalty
if vision_model is not None:
self.vision_model = vision_model
else:
# self.vision_model = SiglipVisionModel.from_pretrained(config.vision_config._name_or_path, hidden_act = "gelu")
self.vision_model = SiglipVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
self.config.llm_config = language_model.config
else:
if config.llm_config.architectures[0] == 'Qwen3ForCausalLM':
# self.language_model = Qwen3ForCausalLM.from_pretrained(config.llm_config._name_or_path, pad_token_id = 151670, bos_token_id = 128245, eos_token_id = 151645, tie_word_embeddings = False)
self.language_model = Qwen3ForCausalLM(config.llm_config)
else:
raise NotImplementedError(
f'{config.llm_config.architectures[0]} is not implemented.')
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, use_fast=True)
self.tokenizer.add_special_tokens({"additional_special_tokens": ["<|endofchunk|>", "<s>", "<|pad|>"]})
self.tokenizer.pad_token = "<|pad|>"
self.tokenizer.bos_token = "<s>"
self.offset = 1 if self.tokenizer.encode("\n")[0] == self.tokenizer.bos_token_id else 0
if "finetune" in config.run_dir:
self.arch_specifier = "full-align+729-avgpool"
else:
self.arch_specifier = "no-align+avgpool"
if self.arch_specifier.split("+")[-1].split("-")[0] != "avgpool":
query_dim = int(self.arch_specifier.split("+")[-1].split("-")[0])
else:
query_dim = 144
self.projector = AvgPoolProjector(query_num=query_dim, mm_hidden_size=config.vision_config.hidden_size, llm_hidden_size=config.llm_config.hidden_size)
self.vision_backbone_requires_grad = False
self.img_context_token_id = 151655
self.image_processor = SiglipImageProcessor.from_pretrained(
config._name_or_path,
size={"height": 384, "width": 384},
resample=PIL.Image.Resampling.BICUBIC,
crop_size={"height": 384, "width": 384},
do_center_crop=True,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_convert_rgb=True
)
@classmethod
# load model from .pt file
def from_pretrained_ckpt(cls, pretrained_model_name_or_path, *args, **kwargs):
config = InfiMedConfig.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
model = cls(config)
ckpt_base_path = os.path.join(os.path.dirname(pretrained_model_name_or_path), "checkpoints")
if (Path(ckpt_base_path) / SAFE_WEIGHTS_NAME).exists():
state_dict = load_file(Path(ckpt_base_path) / SAFE_WEIGHTS_NAME)
elif (Path(ckpt_base_path) / WEIGHTS_NAME).exists():
state_dict = torch.load(Path(ckpt_base_path) / WEIGHTS_NAME, map_location="cpu")["model"]
elif (Path(ckpt_base_path) / "latest-checkpoint.pt").exists():
state_dict = torch.load(Path(ckpt_base_path) / "latest-checkpoint.pt", map_location="cpu")["model"]
else:
raise FileNotFoundError("No model weights found in the directory.")
if "vision_backbone" in state_dict:
model.vision_model.load_state_dict(state_dict["vision_backbone"])
new_state_dict = {}
for key, value in state_dict["llm_backbone"].items():
new_key = key.replace("llm.", "")
new_state_dict[new_key] = value
model.language_model.load_state_dict(new_state_dict)
model.projector.load_state_dict(state_dict["projector"])
model.to("cuda", dtype=torch.bfloat16)
model.requires_grad_(False)
model.eval()
return model
def save_checkpoint(self, save_path):
os.makedirs(save_path, exist_ok=True)
self.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
self.image_processor.save_pretrained(save_path)
def process_messages(self,messages):
prompt_builder = Qwen3PromptBuilder()
if "image" in messages:
processed_prompt = "<image>" + "\n" + messages['prompt'].replace("<image>", '')
elif "images" in messages:
processed_prompt = ""
for i, image in enumerate(messages['images']):
processed_prompt += f"<image_{i+1}>: "
processed_prompt += "\n" + messages['prompt'].replace("<image>", '')
msg = prompt_builder.add_turn("user", processed_prompt)
msg = msg.strip()
if isinstance(self.tokenizer, LlamaTokenizerFast):
msg = msg.rstrip()
else:
pass
turn_input_ids, _ = tokenizer_image_token(msg, self.tokenizer)
result = []
for x in turn_input_ids:
if x == -200:
result.extend([self.img_context_token_id] * 729)
else:
result.append(x)
turn_input_ids = result
input_ids = torch.tensor(turn_input_ids)
input_ids = input_ids[: self.tokenizer.model_max_length]
input_ids = input_ids.unsqueeze(0)
if "image" in messages:
pixel_values = self.image_processor(images=messages["image"], return_tensors="pt")["pixel_values"]
else:
pixel_values = None
input_ids = input_ids.to("cuda")
pixel_values = pixel_values.to("cuda") if pixel_values is not None else None
return input_ids, pixel_values
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> CausalLMOutputWithPast:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * \
0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * \
0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
if attention_mask is None:
batch_size = input_embeds.shape[0]
max_len = input_embeds.shape[1]
attention_mask = torch.zeros((batch_size, max_len), device=input_embeds.device).bool()
for index in range(batch_size):
if getattr(self.tokenizer, 'tokenizer_padding_side', 'right') == 'left':
attention_mask[index, -max_len:] = True
else:
attention_mask[index, :max_len] = True
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1,
self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def extract_feature(self, pixel_values):
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[-2]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = vit_embeds.reshape(
vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.projector(vit_embeds)
return vit_embeds
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(
-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
if attention_mask is None:
batch_size = input_embeds.shape[0]
max_len = input_embeds.shape[1]
attention_mask = torch.zeros((batch_size, max_len), device=input_embeds.device).bool()
for index in range(batch_size):
if getattr(self.tokenizer, 'tokenizer_padding_side', 'right') == 'left':
attention_mask[index, -max_len:] = True
else:
attention_mask[index, :max_len] = True
outputs = self.language_model.generate(
# input_ids=origin_input_ids,
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
# return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs
@torch.no_grad()
def generate_output(self,messages):
input_ids, pixel_values = self.process_messages(messages)
do_sample = False if self.temperature == 0 else True
generated_ids = self.generate(pixel_values=pixel_values, input_ids=input_ids, temperature=self.temperature,top_p=self.top_p,repetition_penalty=self.repetition_penalty,max_new_tokens=self.max_new_tokens,do_sample = do_sample)
generated_ids_trimmed = generated_ids
output_text = self.tokenizer.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
def generate_outputs(self,messages_list):
res = []
for messages in messages_list:
result = self.generate_output(messages)
res.append(result)
return res
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
labels = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
labels.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
for x in insert_separator(prompt_chunks, [IGNORE_INDEX] * (offset + 1)):
labels.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long), torch.tensor(labels, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids, labels