File size: 20,783 Bytes
ec8728a ccc960e ec8728a ccc960e ec8728a a1b4f6c ec8728a a1b4f6c ec8728a ccc960e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import os
from accelerate import PartialState
import PIL
from transformers import PreTrainedModel, PretrainedConfig, GenerationConfig, AutoTokenizer, LlamaTokenizerFast
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers import Qwen3ForCausalLM, SiglipImageProcessor
from safetensors.torch import load_file
from transformers.modeling_outputs import CausalLMOutputWithPast
from modeling_siglip import SiglipVisionModel
from configuration_siglip import SiglipVisionConfig
from configuration_qwen3 import Qwen3Config
from abc import ABC, abstractmethod
from einops import rearrange
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
class PromptBuilder(ABC):
def __init__(self, system_prompt: Optional[str] = None) -> None:
# Only some models define a system prompt => let subclasses handle this logic!
self.system_prompt = system_prompt
@abstractmethod
def add_turn(self, role: str, message: str) -> str: ...
@abstractmethod
def get_potential_prompt(self, user_msg: str) -> None: ...
@abstractmethod
def get_prompt(self) -> str: ...
class Qwen3PromptBuilder(PromptBuilder):
def __init__(self, system_prompt: Optional[str] = None) -> None:
super().__init__(system_prompt)
self.system_prompt = "<s><|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
self.bos, self.eos = "<s>", "<|im_end|>"
# Get role-specific "wrap" functions
self.wrap_human = lambda msg: f"<|im_start|>user\n{msg}<|im_end|>assistant\n"
self.wrap_gpt = lambda msg: f"{msg if msg != '' else ' '}{self.eos}\n"
# === `self.prompt` gets built up over multiple turns ===
self.prompt, self.turn_count = "", 0
def add_turn(self, role: str, message: str) -> str:
# assert (role == "human") if (self.turn_count % 2 == 0) else (role == "gpt")
message = message.strip() #.replace("<image>", "").strip()
# Special Handling for "system" prompt (turn_count == 0)
if self.turn_count == 0:
sys_message = self.system_prompt + self.wrap_human(message)
wrapped_message = sys_message
elif (self.turn_count % 2) == 0:
human_message = self.wrap_human(message)
wrapped_message = human_message
else:
gpt_message = self.wrap_gpt(message)
wrapped_message = gpt_message
# Update Prompt
self.prompt += wrapped_message
# Bump Turn Counter
self.turn_count += 1
# Return "wrapped_message" (effective string added to context)
return wrapped_message
def get_potential_prompt(self, message: str) -> None:
# Assumes that it's always the user's (human's) turn!
prompt_copy = str(self.prompt)
# Special Handling for "system" prompt (turn_count == 0)
if self.turn_count == 0:
sys_message = self.system_prompt + self.wrap_human(message)
prompt_copy += sys_message
else:
human_message = self.wrap_human(message)
prompt_copy += human_message
# return prompt_copy.removeprefix(self.bos).rstrip()
return prompt_copy.rstrip()
def get_prompt(self) -> str:
# Remove prefix <bos> (if exists) because it gets auto-inserted by tokenizer!
# return self.prompt.removeprefix(self.bos).rstrip()
return self.prompt.rstrip()
class InfiMedConfig(PretrainedConfig):
def __init__(
self,
vision_config=None,
llm_config=None,
run_dir: str = None,
load_precision: str = "bf16",
max_length: int = 128,
temperature: float = 1.0,
**kwargs
):
if vision_config is None:
vision_config = {}
print(
'vision_config is None. Initializing the SiglipVisionConfig with default values.')
if llm_config is None:
llm_config = {'architectures': ['Qwen3ForCausalLM']}
print(
'llm_config is None. Initializing the Qwen3Config config with default values')
self.vision_config = SiglipVisionConfig(**vision_config)
if llm_config['architectures'][0] == 'Qwen3ForCausalLM':
self.llm_config = Qwen3Config(**llm_config)
else:
raise ValueError('Unsupported architecture: {}'.format(
llm_config['architectures'][0]))
self.run_dir = run_dir
self.load_precision = load_precision
self.max_length = max_length
self.temperature = temperature
super().__init__(**kwargs)
class AvgPoolProjector(nn.Module):
def __init__(
self,
layer_num: int = 2,
query_num: int = 144,
mm_hidden_size: int = 1024,
llm_hidden_size: int = 4096,
):
super().__init__()
self.layer_num = layer_num
self.query_num = query_num
self.mm_hidden_size = mm_hidden_size
self.llm_hidden_size = llm_hidden_size
self.build_net()
def build_net(self):
hw = int(self.query_num ** 0.5)
sampler = nn.AdaptiveAvgPool2d((hw, hw))
self.sampler = sampler
modules = [nn.Linear(self.mm_hidden_size, self.llm_hidden_size)]
for _ in range(1, self.layer_num):
modules.append(nn.GELU())
modules.append(nn.Linear(self.llm_hidden_size, self.llm_hidden_size))
self.mlp_projector = nn.Sequential(*modules)
print(f"patch size {hw} average pooling layer initialized")
def forward(self, visual_feat: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, h_dim = visual_feat.shape
hw = int(seq_len ** 0.5)
shaped_visual_feat = rearrange(visual_feat, "b (h w) d -> b d h w", h=hw, w=hw)
pooled_visual_feat = self.sampler(shaped_visual_feat)
reshaped_visual_feat = rearrange(pooled_visual_feat, "b d h w -> b (h w) d")
output_feat = self.mlp_projector(reshaped_visual_feat)
return output_feat
class InfiMed(PreTrainedModel):
config_class = InfiMedConfig
def __init__(self, config: InfiMedConfig, vision_model=None, language_model=None):
super().__init__(config)
self.run_dir = Path(config.run_dir) if config.run_dir else None
self.model_dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[config.load_precision]
self.distributed_state = PartialState()
self.max_new_tokens = config.max_length
self.temperature = config.temperature
self.top_p = config.top_p
self.repetition_penalty = config.repetition_penalty
if vision_model is not None:
self.vision_model = vision_model
else:
# self.vision_model = SiglipVisionModel.from_pretrained(config.vision_config._name_or_path, hidden_act = "gelu")
self.vision_model = SiglipVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
self.config.llm_config = language_model.config
else:
if config.llm_config.architectures[0] == 'Qwen3ForCausalLM':
# self.language_model = Qwen3ForCausalLM.from_pretrained(config.llm_config._name_or_path, pad_token_id = 151670, bos_token_id = 128245, eos_token_id = 151645, tie_word_embeddings = False)
self.language_model = Qwen3ForCausalLM(config.llm_config)
else:
raise NotImplementedError(
f'{config.llm_config.architectures[0]} is not implemented.')
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, use_fast=True)
self.tokenizer.add_special_tokens({"additional_special_tokens": ["<|endofchunk|>", "<s>", "<|pad|>"]})
self.tokenizer.pad_token = "<|pad|>"
self.tokenizer.bos_token = "<s>"
self.offset = 1 if self.tokenizer.encode("\n")[0] == self.tokenizer.bos_token_id else 0
if "finetune" in config.run_dir:
self.arch_specifier = "full-align+729-avgpool"
else:
self.arch_specifier = "no-align+avgpool"
if self.arch_specifier.split("+")[-1].split("-")[0] != "avgpool":
query_dim = int(self.arch_specifier.split("+")[-1].split("-")[0])
else:
query_dim = 144
self.projector = AvgPoolProjector(query_num=query_dim, mm_hidden_size=config.vision_config.hidden_size, llm_hidden_size=config.llm_config.hidden_size)
self.vision_backbone_requires_grad = False
self.img_context_token_id = 151655
self.image_processor = SiglipImageProcessor.from_pretrained(
config._name_or_path,
size={"height": 384, "width": 384},
resample=PIL.Image.Resampling.BICUBIC,
crop_size={"height": 384, "width": 384},
do_center_crop=True,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_convert_rgb=True
)
@classmethod
# load model from .pt file
def from_pretrained_ckpt(cls, pretrained_model_name_or_path, *args, **kwargs):
config = InfiMedConfig.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
model = cls(config)
ckpt_base_path = os.path.join(os.path.dirname(pretrained_model_name_or_path), "checkpoints")
if (Path(ckpt_base_path) / SAFE_WEIGHTS_NAME).exists():
state_dict = load_file(Path(ckpt_base_path) / SAFE_WEIGHTS_NAME)
elif (Path(ckpt_base_path) / WEIGHTS_NAME).exists():
state_dict = torch.load(Path(ckpt_base_path) / WEIGHTS_NAME, map_location="cpu")["model"]
elif (Path(ckpt_base_path) / "latest-checkpoint.pt").exists():
state_dict = torch.load(Path(ckpt_base_path) / "latest-checkpoint.pt", map_location="cpu")["model"]
else:
raise FileNotFoundError("No model weights found in the directory.")
if "vision_backbone" in state_dict:
model.vision_model.load_state_dict(state_dict["vision_backbone"])
new_state_dict = {}
for key, value in state_dict["llm_backbone"].items():
new_key = key.replace("llm.", "")
new_state_dict[new_key] = value
model.language_model.load_state_dict(new_state_dict)
model.projector.load_state_dict(state_dict["projector"])
model.to("cuda", dtype=torch.bfloat16)
model.requires_grad_(False)
model.eval()
return model
def save_checkpoint(self, save_path):
os.makedirs(save_path, exist_ok=True)
self.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
self.image_processor.save_pretrained(save_path)
def process_messages(self,messages):
prompt_builder = Qwen3PromptBuilder()
if "image" in messages:
processed_prompt = "<image>" + "\n" + messages['prompt'].replace("<image>", '')
elif "images" in messages:
processed_prompt = ""
for i, image in enumerate(messages['images']):
processed_prompt += f"<image_{i+1}>: "
processed_prompt += "\n" + messages['prompt'].replace("<image>", '')
msg = prompt_builder.add_turn("user", processed_prompt)
msg = msg.strip()
if isinstance(self.tokenizer, LlamaTokenizerFast):
msg = msg.rstrip()
else:
pass
turn_input_ids, _ = tokenizer_image_token(msg, self.tokenizer)
result = []
for x in turn_input_ids:
if x == -200:
result.extend([self.img_context_token_id] * 729)
else:
result.append(x)
turn_input_ids = result
input_ids = torch.tensor(turn_input_ids)
input_ids = input_ids[: self.tokenizer.model_max_length]
input_ids = input_ids.unsqueeze(0)
if "image" in messages:
pixel_values = self.image_processor(images=messages["image"], return_tensors="pt")["pixel_values"]
else:
pixel_values = None
input_ids = input_ids.to("cuda")
pixel_values = pixel_values.to("cuda") if pixel_values is not None else None
return input_ids, pixel_values
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> CausalLMOutputWithPast:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * \
0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * \
0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
if attention_mask is None:
batch_size = input_embeds.shape[0]
max_len = input_embeds.shape[1]
attention_mask = torch.zeros((batch_size, max_len), device=input_embeds.device).bool()
for index in range(batch_size):
if getattr(self.tokenizer, 'tokenizer_padding_side', 'right') == 'left':
attention_mask[index, -max_len:] = True
else:
attention_mask[index, :max_len] = True
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1,
self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def extract_feature(self, pixel_values):
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[-2]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = vit_embeds.reshape(
vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.projector(vit_embeds)
return vit_embeds
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(
-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
if attention_mask is None:
batch_size = input_embeds.shape[0]
max_len = input_embeds.shape[1]
attention_mask = torch.zeros((batch_size, max_len), device=input_embeds.device).bool()
for index in range(batch_size):
if getattr(self.tokenizer, 'tokenizer_padding_side', 'right') == 'left':
attention_mask[index, -max_len:] = True
else:
attention_mask[index, :max_len] = True
outputs = self.language_model.generate(
# input_ids=origin_input_ids,
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
# return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs
@torch.no_grad()
def generate_output(self,messages):
input_ids, pixel_values = self.process_messages(messages)
do_sample = False if self.temperature == 0 else True
generated_ids = self.generate(pixel_values=pixel_values, input_ids=input_ids, temperature=self.temperature,top_p=self.top_p,repetition_penalty=self.repetition_penalty,max_new_tokens=self.max_new_tokens,do_sample = do_sample)
generated_ids_trimmed = generated_ids
output_text = self.tokenizer.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
def generate_outputs(self,messages_list):
res = []
for messages in messages_list:
result = self.generate_output(messages)
res.append(result)
return res
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
labels = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
labels.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
for x in insert_separator(prompt_chunks, [IGNORE_INDEX] * (offset + 1)):
labels.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long), torch.tensor(labels, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids, labels
|