File size: 20,783 Bytes
ec8728a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc960e
 
ec8728a
 
 
 
 
 
ccc960e
 
ec8728a
 
 
 
a1b4f6c
ec8728a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1b4f6c
ec8728a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc960e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import os
from accelerate import PartialState
import PIL
from transformers import PreTrainedModel, PretrainedConfig, GenerationConfig, AutoTokenizer, LlamaTokenizerFast
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers import Qwen3ForCausalLM, SiglipImageProcessor
from safetensors.torch import load_file
from transformers.modeling_outputs import CausalLMOutputWithPast
from modeling_siglip import SiglipVisionModel
from configuration_siglip import SiglipVisionConfig
from configuration_qwen3 import Qwen3Config
from abc import ABC, abstractmethod
from einops import rearrange


IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200


class PromptBuilder(ABC):
    def __init__(self, system_prompt: Optional[str] = None) -> None:
        # Only some models define a system prompt => let subclasses handle this logic!
        self.system_prompt = system_prompt

    @abstractmethod
    def add_turn(self, role: str, message: str) -> str: ...

    @abstractmethod
    def get_potential_prompt(self, user_msg: str) -> None: ...

    @abstractmethod
    def get_prompt(self) -> str: ...

class Qwen3PromptBuilder(PromptBuilder):
    def __init__(self, system_prompt: Optional[str] = None) -> None:
        super().__init__(system_prompt)
        self.system_prompt = "<s><|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        self.bos, self.eos = "<s>", "<|im_end|>"

        # Get role-specific "wrap" functions
        self.wrap_human = lambda msg: f"<|im_start|>user\n{msg}<|im_end|>assistant\n"
        self.wrap_gpt = lambda msg: f"{msg if msg != '' else ' '}{self.eos}\n"

        # === `self.prompt` gets built up over multiple turns ===
        self.prompt, self.turn_count = "", 0

    def add_turn(self, role: str, message: str) -> str:
        # assert (role == "human") if (self.turn_count % 2 == 0) else (role == "gpt")
        message = message.strip() #.replace("<image>", "").strip()

        # Special Handling for "system" prompt (turn_count == 0)
        if self.turn_count == 0:
            sys_message = self.system_prompt + self.wrap_human(message)
            wrapped_message = sys_message
        elif (self.turn_count % 2) == 0:
            human_message = self.wrap_human(message)
            wrapped_message = human_message
        else:
            gpt_message = self.wrap_gpt(message)
            wrapped_message = gpt_message

        # Update Prompt
        self.prompt += wrapped_message


        # Bump Turn Counter
        self.turn_count += 1

        # Return "wrapped_message" (effective string added to context)
        return wrapped_message

    def get_potential_prompt(self, message: str) -> None:
        # Assumes that it's always the user's (human's) turn!
        prompt_copy = str(self.prompt)

        # Special Handling for "system" prompt (turn_count == 0)
        if self.turn_count == 0:
            sys_message = self.system_prompt + self.wrap_human(message)
            prompt_copy += sys_message

        else:
            human_message = self.wrap_human(message)
            prompt_copy += human_message

        # return prompt_copy.removeprefix(self.bos).rstrip()
        return prompt_copy.rstrip()

    def get_prompt(self) -> str:
        # Remove prefix <bos> (if exists) because it gets auto-inserted by tokenizer!
        # return self.prompt.removeprefix(self.bos).rstrip()
        return self.prompt.rstrip()

class InfiMedConfig(PretrainedConfig):
    
    def __init__(
        self,
        vision_config=None,
        llm_config=None,
        run_dir: str = None,
        load_precision: str = "bf16",
        max_length: int = 128,
        temperature: float = 1.0,
        **kwargs
    ):
        if vision_config is None:
            vision_config = {}
            print(
                'vision_config is None. Initializing the SiglipVisionConfig with default values.')

        if llm_config is None:
            llm_config = {'architectures': ['Qwen3ForCausalLM']}
            print(
                'llm_config is None. Initializing the Qwen3Config config with default values')

        self.vision_config = SiglipVisionConfig(**vision_config)
        if llm_config['architectures'][0] == 'Qwen3ForCausalLM':
            self.llm_config = Qwen3Config(**llm_config)
        else:
            raise ValueError('Unsupported architecture: {}'.format(
                llm_config['architectures'][0]))
        self.run_dir = run_dir
        self.load_precision = load_precision
        self.max_length = max_length
        self.temperature = temperature
        super().__init__(**kwargs)

class AvgPoolProjector(nn.Module):
    def __init__(
        self,
        layer_num: int = 2,
        query_num: int = 144,
        mm_hidden_size: int = 1024,
        llm_hidden_size: int = 4096,
    ):
        super().__init__()
        self.layer_num = layer_num
        self.query_num = query_num
        self.mm_hidden_size = mm_hidden_size
        self.llm_hidden_size = llm_hidden_size
        self.build_net()
        
    def build_net(self):
        hw = int(self.query_num ** 0.5)
        sampler = nn.AdaptiveAvgPool2d((hw, hw))
        self.sampler = sampler
        modules = [nn.Linear(self.mm_hidden_size, self.llm_hidden_size)]
        for _ in range(1, self.layer_num):
            modules.append(nn.GELU())
            modules.append(nn.Linear(self.llm_hidden_size, self.llm_hidden_size))
        self.mlp_projector = nn.Sequential(*modules)
        print(f"patch size {hw} average pooling layer initialized")
        
    def forward(self, visual_feat: torch.Tensor) -> torch.Tensor:
        batch_size, seq_len, h_dim = visual_feat.shape 
        hw = int(seq_len ** 0.5) 
        shaped_visual_feat = rearrange(visual_feat, "b (h w) d -> b d h w", h=hw, w=hw) 
        pooled_visual_feat = self.sampler(shaped_visual_feat) 
        reshaped_visual_feat = rearrange(pooled_visual_feat, "b d h w -> b (h w) d") 
        output_feat = self.mlp_projector(reshaped_visual_feat) 
        return output_feat

class InfiMed(PreTrainedModel):
    config_class = InfiMedConfig
    
    def __init__(self, config: InfiMedConfig, vision_model=None, language_model=None):
        super().__init__(config)
        self.run_dir = Path(config.run_dir) if config.run_dir else None
        self.model_dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[config.load_precision]
        self.distributed_state = PartialState()
        self.max_new_tokens = config.max_length
        self.temperature = config.temperature
        self.top_p = config.top_p
        self.repetition_penalty = config.repetition_penalty


        if vision_model is not None:
            self.vision_model = vision_model
        else:
            # self.vision_model = SiglipVisionModel.from_pretrained(config.vision_config._name_or_path, hidden_act = "gelu")
            self.vision_model = SiglipVisionModel(config.vision_config)

        if language_model is not None:
            self.language_model = language_model
            self.config.llm_config = language_model.config
        else:
            if config.llm_config.architectures[0] == 'Qwen3ForCausalLM':
                # self.language_model = Qwen3ForCausalLM.from_pretrained(config.llm_config._name_or_path, pad_token_id = 151670, bos_token_id = 128245, eos_token_id = 151645, tie_word_embeddings = False)
                self.language_model = Qwen3ForCausalLM(config.llm_config)
            else:
                raise NotImplementedError(
                    f'{config.llm_config.architectures[0]} is not implemented.')
    
        self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, use_fast=True)
        self.tokenizer.add_special_tokens({"additional_special_tokens": ["<|endofchunk|>", "<s>", "<|pad|>"]})
        self.tokenizer.pad_token = "<|pad|>"
        self.tokenizer.bos_token = "<s>"

        self.offset = 1 if self.tokenizer.encode("\n")[0] == self.tokenizer.bos_token_id else 0

        if "finetune" in config.run_dir:
            self.arch_specifier = "full-align+729-avgpool"
        else:
            self.arch_specifier = "no-align+avgpool"

        if self.arch_specifier.split("+")[-1].split("-")[0] != "avgpool":
            query_dim = int(self.arch_specifier.split("+")[-1].split("-")[0])
        else:
            query_dim = 144
        self.projector = AvgPoolProjector(query_num=query_dim, mm_hidden_size=config.vision_config.hidden_size, llm_hidden_size=config.llm_config.hidden_size)

        self.vision_backbone_requires_grad = False

        self.img_context_token_id = 151655

        self.image_processor = SiglipImageProcessor.from_pretrained(
            config._name_or_path,
            size={"height": 384, "width": 384},  
            resample=PIL.Image.Resampling.BICUBIC,  
            crop_size={"height": 384, "width": 384},  
            do_center_crop=True,  
            do_normalize=True,  
            image_mean=[0.5, 0.5, 0.5],  
            image_std=[0.5, 0.5, 0.5],  
            do_convert_rgb=True  
        )


    @classmethod
    # load model from .pt file
    def from_pretrained_ckpt(cls, pretrained_model_name_or_path, *args, **kwargs):
        config = InfiMedConfig.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
        model = cls(config)
        ckpt_base_path = os.path.join(os.path.dirname(pretrained_model_name_or_path), "checkpoints")
        if (Path(ckpt_base_path) / SAFE_WEIGHTS_NAME).exists():
            state_dict = load_file(Path(ckpt_base_path) / SAFE_WEIGHTS_NAME)
        elif (Path(ckpt_base_path) / WEIGHTS_NAME).exists():
            state_dict = torch.load(Path(ckpt_base_path) / WEIGHTS_NAME, map_location="cpu")["model"]
        elif (Path(ckpt_base_path) / "latest-checkpoint.pt").exists():
            state_dict = torch.load(Path(ckpt_base_path) / "latest-checkpoint.pt", map_location="cpu")["model"]
        else:
            raise FileNotFoundError("No model weights found in the directory.")
        if "vision_backbone" in state_dict:
            model.vision_model.load_state_dict(state_dict["vision_backbone"])

        new_state_dict = {}
        for key, value in state_dict["llm_backbone"].items():
            new_key = key.replace("llm.", "")
            new_state_dict[new_key] = value
        model.language_model.load_state_dict(new_state_dict)
        model.projector.load_state_dict(state_dict["projector"])

        model.to("cuda", dtype=torch.bfloat16)

        model.requires_grad_(False)
        model.eval()
        return model

    def save_checkpoint(self, save_path):
        os.makedirs(save_path, exist_ok=True)
        self.save_pretrained(save_path)
        self.tokenizer.save_pretrained(save_path)
        self.image_processor.save_pretrained(save_path)


    def process_messages(self,messages):
        prompt_builder = Qwen3PromptBuilder()
        if "image" in messages:
            processed_prompt = "<image>" + "\n" + messages['prompt'].replace("<image>", '')
        elif "images" in messages:
            processed_prompt = ""
            for i, image in enumerate(messages['images']):
                processed_prompt += f"<image_{i+1}>: "
            processed_prompt += "\n" + messages['prompt'].replace("<image>", '')

        msg = prompt_builder.add_turn("user", processed_prompt)
        msg = msg.strip()

        if isinstance(self.tokenizer, LlamaTokenizerFast):
            msg = msg.rstrip()
        else:
            pass

        turn_input_ids, _ = tokenizer_image_token(msg, self.tokenizer)

        result = []
        for x in turn_input_ids:
            if x == -200:
                result.extend([self.img_context_token_id] * 729)
            else:
                result.append(x)

        turn_input_ids = result

        input_ids = torch.tensor(turn_input_ids)

        input_ids = input_ids[: self.tokenizer.model_max_length]

        input_ids = input_ids.unsqueeze(0)

        if "image" in messages:
            pixel_values = self.image_processor(images=messages["image"], return_tensors="pt")["pixel_values"]
        else:
            pixel_values = None

        input_ids = input_ids.to("cuda")
        pixel_values = pixel_values.to("cuda") if pixel_values is not None else None

        return input_ids, pixel_values

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        image_flags: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> CausalLMOutputWithPast:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vit_embeds = self.extract_feature(pixel_values)

        input_embeds = self.language_model.get_input_embeddings()(input_ids)

        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)


        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)
        try:
            input_embeds[selected] = input_embeds[selected] * \
                0.0 + vit_embeds.reshape(-1, C)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * \
                0.0 + vit_embeds[:n_token]

        input_embeds = input_embeds.reshape(B, N, C)

        if attention_mask is None:
            batch_size = input_embeds.shape[0]
            max_len = input_embeds.shape[1]
            attention_mask = torch.zeros((batch_size, max_len), device=input_embeds.device).bool()
            for index in range(batch_size):
                if getattr(self.tokenizer, 'tokenizer_padding_side', 'right') == 'left':
                    attention_mask[index, -max_len:] = True
                else:
                    attention_mask[index, :max_len] = True


        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1,
                                             self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )



    def extract_feature(self, pixel_values):
        vit_embeds = self.vision_model(
            pixel_values=pixel_values,
            output_hidden_states=True,
            return_dict=True).hidden_states[-2]

        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = vit_embeds.reshape(
            vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.projector(vit_embeds)
        return vit_embeds


    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        assert self.img_context_token_id is not None
        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                vit_embeds = self.extract_feature(pixel_values)
            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            input_embeds[selected] = vit_embeds.reshape(
                -1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)


        if attention_mask is None:
            batch_size = input_embeds.shape[0]
            max_len = input_embeds.shape[1]
            attention_mask = torch.zeros((batch_size, max_len), device=input_embeds.device).bool()
            for index in range(batch_size):
                if getattr(self.tokenizer, 'tokenizer_padding_side', 'right') == 'left':
                    attention_mask[index, -max_len:] = True
                else:
                    attention_mask[index, :max_len] = True

        outputs = self.language_model.generate(
            # input_ids=origin_input_ids,
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            # return_dict=return_dict,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs



    @torch.no_grad()
    def generate_output(self,messages):
        input_ids, pixel_values = self.process_messages(messages)
        do_sample = False if self.temperature == 0 else True
        generated_ids = self.generate(pixel_values=pixel_values, input_ids=input_ids, temperature=self.temperature,top_p=self.top_p,repetition_penalty=self.repetition_penalty,max_new_tokens=self.max_new_tokens,do_sample = do_sample)
        generated_ids_trimmed = generated_ids
        output_text = self.tokenizer.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
        return output_text[0]
    
    def generate_outputs(self,messages_list):
        res = []
        for messages in messages_list:
            result = self.generate_output(messages)
            res.append(result)
        return res


def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    labels = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])
        labels.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])
    
    for x in insert_separator(prompt_chunks, [IGNORE_INDEX] * (offset + 1)):
        labels.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long), torch.tensor(labels, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids, labels