--- license: apache-2.0 --- ## GitHub https://github.com/Reallm-Labs/Infi-MMR ## Inference Our models are established on top of the Qwen2.5-VL family. So we include a simple use case here, and refer the readers to [the standard inference procedure of Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL). ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Reallm-Labs/Infi-MMR-3B", torch_dtype="auto", device_map="auto" ) min_pixels = 256*28*28 max_pixels = 1280*28*28 processor = AutoProcessor.from_pretrained("Reallm-Labs/Infi-MMR-3B", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=4096) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Citation Information If you find this work useful, we would be grateful if you consider citing the following papers: ```bibtex @article{liu2025infimmr, title={Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models}, author={Zeyu Liu and Yuhang Liu and Guanghao Zhu and Congkai Xie and Zhen Li and Jianbo Yuan and Xinyao Wang and Qing Li and Shing-Chi Cheung and Shengyu Zhang and Fei Wu and Hongxia Yang}, journal={arXiv preprint arXiv:2505.23091}, year={2025} } ```