infimm-zephyr / eva_vit.py
xiaotianhan's picture
Upload folder using huggingface_hub
779abe8
# --------------------------------------------------------
# Adapted from https://github.com/baaivision/EVA/blob/master/EVA-CLIP/rei/eva_clip/eva_vit_model.py
# --------------------------------------------------------
import logging
import math
import os
from dataclasses import dataclass
from functools import partial
from math import pi
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
if os.getenv("ENV_TYPE") == "deepspeed":
try:
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
except:
from torch.utils.checkpoint import checkpoint
else:
from torch.utils.checkpoint import checkpoint
try:
import xformers.ops as xops
except ImportError:
xops = None
print("Please 'pip install xformers'")
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.0
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
def forward(self, x):
if not self.training or self.prob == 0.0:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
if self.training and os.getenv("RoPE") == "1":
return x, patch_indices_keep
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
drop=0.0,
subln=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.ffn_ln(x)
x = self.fc2(x)
x = self.drop(x)
return x
class SwiGLU(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.SiLU,
drop=0.0,
norm_layer=nn.LayerNorm,
subln=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.w1 = nn.Linear(in_features, hidden_features)
self.w2 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
self.w3 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x1 = self.w1(x)
x2 = self.w2(x)
hidden = self.act(x1) * x2
x = self.ffn_ln(hidden)
x = self.w3(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
xattn=False,
rope=None,
subln=False,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.subln = subln
if self.subln:
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
else:
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2,
dtype=relative_coords.dtype,
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
# self.proj = nn.Linear(all_head_dim, all_head_dim)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.xattn = xattn
self.xattn_drop = attn_drop
self.rope = rope
def forward(self, x, rel_pos_bias=None, attn_mask=None):
B, N, C = x.shape
if self.subln:
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
q = q.reshape(B, N, self.num_heads, -1).permute(
0, 2, 1, 3
) # B, num_heads, N, C
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
else:
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(
2, 0, 3, 1, 4
) # 3, B, num_heads, N, C
q, k, v = qkv[0], qkv[1], qkv[2]
if self.rope:
# slightly fast impl
q_t = q[:, :, 1:, :]
ro_q_t = self.rope(q_t)
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
k_t = k[:, :, 1:, :]
ro_k_t = self.rope(k_t)
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
if self.xattn:
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
x = xops.memory_efficient_attention(
q,
k,
v,
p=self.xattn_drop,
scale=self.scale,
)
x = x.reshape(B, N, -1)
x = self.inner_attn_ln(x)
x = self.proj(x)
x = self.proj_drop(x)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.relative_position_bias_table is not None:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias.type_as(attn)
if attn_mask is not None:
attn_mask = attn_mask.bool()
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.inner_attn_ln(x)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
xattn=False,
rope=None,
postnorm=False,
subln=False,
naiveswiglu=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
xattn=xattn,
rope=rope,
subln=subln,
norm_layer=norm_layer,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if naiveswiglu:
self.mlp = SwiGLU(
in_features=dim,
hidden_features=mlp_hidden_dim,
subln=subln,
norm_layer=norm_layer,
)
else:
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
subln=subln,
drop=drop,
)
if init_values is not None and init_values > 0:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
else:
self.gamma_1, self.gamma_2 = None, None
self.postnorm = postnorm
def forward(self, x, rel_pos_bias=None, attn_mask=None):
if self.gamma_1 is None:
if self.postnorm:
x = x + self.drop_path(
self.norm1(
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
)
)
x = x + self.drop_path(self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(
self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
)
)
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
if self.postnorm:
x = x + self.drop_path(
self.gamma_1
* self.norm1(
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
)
)
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(
self.gamma_1
* self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
)
)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], (
f"Input image size ({H}*{W}) doesn't match model"
f" ({self.img_size[0]}*{self.img_size[1]})."
)
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class EVAVisionTransformer(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=None,
patch_dropout=0.0,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
rope=False,
use_mean_pooling=True,
init_scale=0.001,
grad_checkpointing=False,
xattn=False,
postnorm=False,
pt_hw_seq_len=16,
intp_freq=False,
naiveswiglu=False,
subln=False,
):
super().__init__()
self.image_size = img_size
self.num_classes = num_classes
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_embed.patch_shape, num_heads=num_heads
)
else:
self.rel_pos_bias = None
if rope:
half_head_dim = embed_dim // num_heads // 2
hw_seq_len = img_size // patch_size
self.rope = VisionRotaryEmbeddingFast(
dim=half_head_dim,
pt_seq_len=pt_hw_seq_len,
ft_seq_len=hw_seq_len if intp_freq else None,
# patch_dropout=patch_dropout
)
else:
self.rope = None
self.naiveswiglu = naiveswiglu
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=(
self.patch_embed.patch_shape if use_rel_pos_bias else None
),
xattn=xattn,
rope=self.rope,
postnorm=postnorm,
subln=subln,
naiveswiglu=naiveswiglu,
)
for i in range(depth)
]
)
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
# trunc_normal_(self.mask_token, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
if isinstance(self.head, nn.Linear):
trunc_normal_(self.head.weight, std=0.02)
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = (
PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity()
)
self.grad_checkpointing = grad_checkpointing
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
if self.naiveswiglu:
rescale(layer.mlp.w3.weight.data, layer_id + 1)
else:
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def get_cast_dtype(self) -> torch.dtype:
return self.blocks[0].mlp.fc2.weight.dtype
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert (
unlocked_groups == 0
), "partial locking not currently supported for this model"
for param in self.parameters():
param.requires_grad = False
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def forward_features(self, x, return_all_features=False, return_all_layers=False):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(
batch_size, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
if os.getenv("RoPE") == "1":
if self.training and not isinstance(self.patch_dropout, nn.Identity):
x, patch_indices_keep = self.patch_dropout(x)
self.rope.forward = partial(
self.rope.forward, patch_indices_keep=patch_indices_keep
)
else:
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
x = self.patch_dropout(x)
else:
x = self.patch_dropout(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
all_x = []
for blk in self.blocks:
if self.grad_checkpointing:
x = checkpoint(blk, x, (rel_pos_bias,))
else:
x = blk(x, rel_pos_bias=rel_pos_bias)
if return_all_layers:
all_x.append(x)
if not return_all_features:
x = self.norm(x)
if self.fc_norm is not None:
return self.fc_norm(x.mean(1))
else:
return x[:, 0]
return x if not return_all_layers else all_x
def forward(self, x, return_all_features=False, return_all_layers=False):
if return_all_features:
return self.forward_features(x, return_all_features, return_all_layers)
x = self.forward_features(x)
x = self.head(x)
return x
@dataclass
class CLIPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
head_width: int = 64
mlp_ratio: float = 4.0
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
ls_init_value: Optional[float] = None # layer scale initial value
patch_dropout: float = 0.0 # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
drop_path_rate: Optional[float] = None # drop path rate
timm_model_name: str = (
None # a valid model name overrides layers, width, patch_size
)
timm_model_pretrained: bool = (
False # use (imagenet) pretrained weights for named model
)
timm_pool: str = ( # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
"avg"
)
timm_proj: str = ( # linear projection for timm model output ('linear', 'mlp', '')
"linear"
)
timm_proj_bias: bool = False # enable bias final projection
eva_model_name: str = (
None # a valid eva model name overrides layers, width, patch_size
)
qkv_bias: bool = True
fusedLN: bool = False
embed_dim: int = 1024
xattn: bool = False
postnorm: bool = False
rope: bool = False
pt_hw_seq_len: int = 16 # 224/14
intp_freq: bool = False
naiveswiglu: bool = False
subln: bool = False
def broadcat(tensors, dim=-1):
num_tensors = len(tensors)
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
shape_len = list(shape_lens)[0]
dim = (dim + shape_len) if dim < 0 else dim
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
assert all(
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]
), "invalid dimensions for broadcastable concatentation"
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
expanded_dims.insert(dim, (dim, dims[dim]))
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
return torch.cat(tensors, dim=dim)
def rotate_half(x):
x = rearrange(x, "... (d r) -> ... d r", r=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d r -> ... (d r)")
class VisionRotaryEmbedding(nn.Module):
def __init__(
self,
dim,
pt_seq_len,
ft_seq_len=None,
custom_freqs=None,
freqs_for="lang",
theta=10000,
max_freq=10,
num_freqs=1,
):
super().__init__()
if custom_freqs:
freqs = custom_freqs
elif freqs_for == "lang":
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
)
elif freqs_for == "pixel":
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
elif freqs_for == "constant":
freqs = torch.ones(num_freqs).float()
else:
raise ValueError(f"unknown modality {freqs_for}")
if ft_seq_len is None:
ft_seq_len = pt_seq_len
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
freqs_h = torch.einsum("..., f -> ... f", t, freqs)
freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2)
freqs_w = torch.einsum("..., f -> ... f", t, freqs)
freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2)
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
self.register_buffer("freqs_cos", freqs.cos())
self.register_buffer("freqs_sin", freqs.sin())
logging.info(f"Shape of rope freq: {self.freqs_cos.shape}")
def forward(self, t, start_index=0):
rot_dim = self.freqs_cos.shape[-1]
end_index = start_index + rot_dim
assert rot_dim <= t.shape[-1], (
f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in"
f" all the positions {rot_dim}"
)
t_left, t, t_right = (
t[..., :start_index],
t[..., start_index:end_index],
t[..., end_index:],
)
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
return torch.cat((t_left, t, t_right), dim=-1)
class VisionRotaryEmbeddingFast(nn.Module):
def __init__(
self,
dim,
pt_seq_len,
ft_seq_len=None,
custom_freqs=None,
freqs_for="lang",
theta=10000,
max_freq=10,
num_freqs=1,
patch_dropout=0.0,
):
super().__init__()
if custom_freqs:
freqs = custom_freqs
elif freqs_for == "lang":
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
)
elif freqs_for == "pixel":
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
elif freqs_for == "constant":
freqs = torch.ones(num_freqs).float()
else:
raise ValueError(f"unknown modality {freqs_for}")
if ft_seq_len is None:
ft_seq_len = pt_seq_len
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
freqs = torch.einsum("..., f -> ... f", t, freqs)
freqs = repeat(freqs, "... n -> ... (n r)", r=2)
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1)
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
self.patch_dropout = patch_dropout
self.register_buffer("freqs_cos", freqs_cos)
self.register_buffer("freqs_sin", freqs_sin)
logging.info(f"Shape of rope freq: {self.freqs_cos.shape}")
def forward(self, t, patch_indices_keep=None):
if patch_indices_keep is not None:
batch = t.size()[0]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
freqs_cos = repeat(
self.freqs_cos, "i j -> n i m j", n=t.shape[0], m=t.shape[1]
)
freqs_sin = repeat(
self.freqs_sin, "i j -> n i m j", n=t.shape[0], m=t.shape[1]
)
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
freqs_cos = rearrange(freqs_cos, "n i m j -> n m i j")
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
freqs_sin = rearrange(freqs_sin, "n i m j -> n m i j")
return t * freqs_cos + rotate_half(t) * freqs_sin
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin