--- library_name: lerobot tags: - model_hub_mixin - pytorch_model_hub_mixin - robotics - dot license: apache-2.0 datasets: - lerobot/pusht pipeline_tag: robotics --- # Model Card for "Decoder Only Transformer (DOT) Policy" for PushT images dataset Read more about the model and implementation details in the [DOT Policy repository](https://github.com/IliaLarchenko/dot_policy). This model is trained using the [LeRobot library](https://huggingface.co/lerobot) and achieves state-of-the-art results on behavior cloning on the PushT images dataset. It achieves a 74.2% success rate (and 0.936 average max reward) vs. ~69% for the previous state-of-the-art model (Diffusion and VQ-BET perform the same). This result is achieved without the checkpoint selection and is easy to reproduce. You can use this model by installing LeRobot from [this branch](https://github.com/IliaLarchenko/lerobot/tree/dot) To train the model: ```bash python lerobot/scripts/train.py \ --policy.type=dot \ --dataset.repo_id=lerobot/pusht \ --env.type=pusht \ --env.task=PushT-v0 \ --output_dir=outputs/train/pusht_images \ --batch_size=24 \ --log_freq=1000 \ --eval_freq=10000 \ --save_freq=50000 \ --offline.steps=1000000 \ --seed=100000 \ --wandb.enable=true \ --num_workers=24 \ --use_amp=true \ --device=cuda \ --policy.return_every_n=2 ``` To evaluate the model: ```bash python lerobot/scripts/eval.py \ --policy.path=IliaLarchenko/dot_pusht_images \ --env.type=pusht \ --env.task=PushT-v0 \ --eval.n_episodes=1000 \ --eval.batch_size=100 \ --seed=1000000 ``` Model size: - Total parameters: 14.1m - Trainable parameters: 2.9m