|
{ |
|
"_name_or_path": "BlackSamorez/Mixtral-8x7b-AQLM-2Bit-1x16-hf", |
|
"architectures": [ |
|
"MixtralForCausalLM" |
|
], |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 1, |
|
"eos_token_id": 2, |
|
"hidden_act": "silu", |
|
"hidden_size": 4096, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 14336, |
|
"max_position_embeddings": 32768, |
|
"model_type": "mixtral", |
|
"num_attention_heads": 32, |
|
"num_experts_per_tok": 2, |
|
"num_hidden_layers": 32, |
|
"num_key_value_heads": 8, |
|
"num_local_experts": 8, |
|
"output_router_logits": false, |
|
"quantization_config": { |
|
"in_group_size": 8, |
|
"linear_weights_not_to_quantize": [ |
|
"model.layers.0.block_sparse_moe.gate.weight", |
|
"model.layers.0.input_layernorm.weight", |
|
"model.layers.0.post_attention_layernorm.weight", |
|
"model.layers.1.block_sparse_moe.gate.weight", |
|
"model.layers.1.input_layernorm.weight", |
|
"model.layers.1.post_attention_layernorm.weight", |
|
"model.layers.2.block_sparse_moe.gate.weight", |
|
"model.layers.2.input_layernorm.weight", |
|
"model.layers.2.post_attention_layernorm.weight", |
|
"model.layers.3.block_sparse_moe.gate.weight", |
|
"model.layers.3.input_layernorm.weight", |
|
"model.layers.3.post_attention_layernorm.weight", |
|
"model.layers.4.block_sparse_moe.gate.weight", |
|
"model.layers.4.input_layernorm.weight", |
|
"model.layers.4.post_attention_layernorm.weight", |
|
"model.layers.5.block_sparse_moe.gate.weight", |
|
"model.layers.5.input_layernorm.weight", |
|
"model.layers.5.post_attention_layernorm.weight", |
|
"model.layers.6.block_sparse_moe.gate.weight", |
|
"model.layers.6.input_layernorm.weight", |
|
"model.layers.6.post_attention_layernorm.weight", |
|
"model.layers.7.block_sparse_moe.gate.weight", |
|
"model.layers.7.input_layernorm.weight", |
|
"model.layers.7.post_attention_layernorm.weight", |
|
"model.layers.8.block_sparse_moe.gate.weight", |
|
"model.layers.8.input_layernorm.weight", |
|
"model.layers.8.post_attention_layernorm.weight", |
|
"model.layers.9.block_sparse_moe.gate.weight", |
|
"model.layers.9.input_layernorm.weight", |
|
"model.layers.9.post_attention_layernorm.weight", |
|
"model.layers.10.block_sparse_moe.gate.weight", |
|
"model.layers.10.input_layernorm.weight", |
|
"model.layers.10.post_attention_layernorm.weight", |
|
"model.layers.11.block_sparse_moe.gate.weight", |
|
"model.layers.11.input_layernorm.weight", |
|
"model.layers.11.post_attention_layernorm.weight", |
|
"model.layers.12.block_sparse_moe.gate.weight", |
|
"model.layers.12.input_layernorm.weight", |
|
"model.layers.12.post_attention_layernorm.weight", |
|
"model.layers.13.block_sparse_moe.gate.weight", |
|
"model.layers.13.input_layernorm.weight", |
|
"model.layers.13.post_attention_layernorm.weight", |
|
"model.layers.14.block_sparse_moe.gate.weight", |
|
"model.layers.14.input_layernorm.weight", |
|
"model.layers.14.post_attention_layernorm.weight", |
|
"model.layers.15.block_sparse_moe.gate.weight", |
|
"model.layers.15.input_layernorm.weight", |
|
"model.layers.15.post_attention_layernorm.weight", |
|
"model.layers.16.block_sparse_moe.gate.weight", |
|
"model.layers.16.input_layernorm.weight", |
|
"model.layers.16.post_attention_layernorm.weight", |
|
"model.layers.17.block_sparse_moe.gate.weight", |
|
"model.layers.17.input_layernorm.weight", |
|
"model.layers.17.post_attention_layernorm.weight", |
|
"model.layers.18.block_sparse_moe.gate.weight", |
|
"model.layers.18.input_layernorm.weight", |
|
"model.layers.18.post_attention_layernorm.weight", |
|
"model.layers.19.block_sparse_moe.gate.weight", |
|
"model.layers.19.input_layernorm.weight", |
|
"model.layers.19.post_attention_layernorm.weight", |
|
"model.layers.20.block_sparse_moe.gate.weight", |
|
"model.layers.20.input_layernorm.weight", |
|
"model.layers.20.post_attention_layernorm.weight", |
|
"model.layers.21.block_sparse_moe.gate.weight", |
|
"model.layers.21.input_layernorm.weight", |
|
"model.layers.21.post_attention_layernorm.weight", |
|
"model.layers.22.block_sparse_moe.gate.weight", |
|
"model.layers.22.input_layernorm.weight", |
|
"model.layers.22.post_attention_layernorm.weight", |
|
"model.layers.23.block_sparse_moe.gate.weight", |
|
"model.layers.23.input_layernorm.weight", |
|
"model.layers.23.post_attention_layernorm.weight", |
|
"model.layers.24.block_sparse_moe.gate.weight", |
|
"model.layers.24.input_layernorm.weight", |
|
"model.layers.24.post_attention_layernorm.weight", |
|
"model.layers.25.block_sparse_moe.gate.weight", |
|
"model.layers.25.input_layernorm.weight", |
|
"model.layers.25.post_attention_layernorm.weight", |
|
"model.layers.26.block_sparse_moe.gate.weight", |
|
"model.layers.26.input_layernorm.weight", |
|
"model.layers.26.post_attention_layernorm.weight", |
|
"model.layers.27.block_sparse_moe.gate.weight", |
|
"model.layers.27.input_layernorm.weight", |
|
"model.layers.27.post_attention_layernorm.weight", |
|
"model.layers.28.block_sparse_moe.gate.weight", |
|
"model.layers.28.input_layernorm.weight", |
|
"model.layers.28.post_attention_layernorm.weight", |
|
"model.layers.29.block_sparse_moe.gate.weight", |
|
"model.layers.29.input_layernorm.weight", |
|
"model.layers.29.post_attention_layernorm.weight", |
|
"model.layers.30.block_sparse_moe.gate.weight", |
|
"model.layers.30.input_layernorm.weight", |
|
"model.layers.30.post_attention_layernorm.weight", |
|
"model.layers.31.block_sparse_moe.gate.weight", |
|
"model.layers.31.input_layernorm.weight", |
|
"model.layers.31.post_attention_layernorm.weight", |
|
"model.embed_tokens.weight", |
|
"model.norm.weight", |
|
"lm_head.weight" |
|
], |
|
"nbits_per_codebook": 16, |
|
"num_codebooks": 1, |
|
"out_group_size": 1, |
|
"quant_method": "aqlm" |
|
}, |
|
"rms_norm_eps": 1e-05, |
|
"rope_theta": 1000000.0, |
|
"router_aux_loss_coef": 0.02, |
|
"sliding_window": null, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "float16", |
|
"transformers_version": "4.38.0", |
|
"use_cache": true, |
|
"vocab_size": 32000 |
|
} |
|
|