--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover model-index: - name: FLAIR-HUB_LPIS-I_swinbase-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 35.76 name: mIoU - type: OA value: 87.189 name: Overall Accuracy - type: IoU value: 83.86 name: IoU building - type: IoU value: 78.38 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 61.59 name: IoU impervious surface - type: IoU value: 57.17 name: IoU pervious surface - type: IoU value: 62.94 name: IoU bare soil - type: IoU value: 90.35 name: IoU water - type: IoU value: 63.38 name: IoU snow - type: IoU value: 54.34 name: IoU herbaceous vegetation - type: IoU value: 57.14 name: IoU agricultural land - type: IoU value: 34.85 name: IoU plowed land - type: IoU value: 33.017 name: IoU vineyard - type: IoU value: 71.73 name: IoU deciduous - type: IoU value: 62.6 name: IoU coniferous - type: IoU value: 30.19 name: IoU brushwood library_name: pytorch ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LPIS-I_swinbase-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Project Page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_base_patch4_window12_384-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - SPOT_RGBI: [4, 1, 2] - SENTINEL2_TS: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] - SENTINEL1-ASC_TS: [1, 2] - SENTINEL1-DESC_TS: [1, 2] - Input normalization (custom): - SPOT_RGBI: mean: [1137.03, 433.26, 508.75] std: [543.11, 312.76, 284.61] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 35.76% | | Overall Accuracy | 87.19% | | F-score | 46.66% | | Precision | 52.77% | | Recall | 44.45% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | grasses | 47.65 | 64.54 | 68.36 | 61.13 | | wheat | 65.72 | 79.32 | 76.87 | 81.93 | | barley | 45.99 | 63.00 | 69.21 | 57.82 | | maize | 74.46 | 85.36 | 79.16 | 92.61 | | other cereals | 13.98 | 24.54 | 26.33 | 22.97 | | rice | 0.00 | 0.00 | 0.00 | 0.00 | | flax/hemp/tobacco | 56.98 | 72.59 | 85.52 | 63.06 | | sunflower | 44.07 | 61.17 | 62.25 | 60.14 | | rapeseed | 81.60 | 89.87 | 86.69 | 93.29 | | other oilseed crops | 0.00 | 0.00 | 0.00 | 0.00 | | soy | 51.80 | 68.24 | 75.15 | 62.50 | | other protein crops | 8.65 | 15.93 | 18.03 | 14.26 | | fodder legumes | 28.25 | 44.05 | 50.58 | 39.01 | | beetroots | 75.18 | 85.83 | 91.19 | 81.07 | | potatoes | 7.18 | 13.41 | 51.09 | 7.71 | | other arable crops | 22.77 | 37.10 | 32.97 | 42.41 | | vineyard | 33.02 | 49.64 | 58.03 | 43.37 | | olive groves | 14.16 | 24.80 | 25.63 | 24.02 | | fruit orchards | 27.82 | 43.53 | 49.41 | 38.90 | | nut orchards | 29.83 | 45.95 | 68.55 | 34.56 | | other permanent crops | 0.27 | 0.53 | 20.92 | 0.27 | | mixed crops | 5.49 | 10.42 | 25.67 | 6.53 | | background | 87.62 | 93.40 | 92.01 | 94.84 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```