---
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LPIS-A_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 22.303
name: mIoU
- type: OA
value: 86.634
name: Overall Accuracy
- type: IoU
value: 83.86
name: IoU building
- type: IoU
value: 78.38
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 61.59
name: IoU impervious surface
- type: IoU
value: 57.17
name: IoU pervious surface
- type: IoU
value: 62.94
name: IoU bare soil
- type: IoU
value: 90.35
name: IoU water
- type: IoU
value: 63.38
name: IoU snow
- type: IoU
value: 54.34
name: IoU herbaceous vegetation
- type: IoU
value: 57.14
name: IoU agricultural land
- type: IoU
value: 34.85
name: IoU plowed land
- type: IoU
value: 43.419
name: IoU vineyard
- type: IoU
value: 71.73
name: IoU deciduous
- type: IoU
value: 62.6
name: IoU coniferous
- type: IoU
value: 30.19
name: IoU brushwood
---
π FLAIR-HUB Model Collection
-
Trained on: FLAIR-HUB dataset
π
-
Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
-
Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
-
Decoders: UNet, UPerNet
-
Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
-
Class nomenclature: 15 classes for LC, 23 classes for LPIS
π Model ID |
πΊοΈ Land-cover |
πΎ Crop-types |
π©οΈ Aerial |
β°οΈ Elevation |
π°οΈ SPOT |
π°οΈ S2 t.s. |
π°οΈ S1 t.s. |
π©οΈ Historical |
LC-A |
β |
|
β |
|
|
|
|
|
LC-D |
β |
|
β |
|
|
β |
|
|
LC-F |
β |
|
β |
|
|
β |
β |
|
LC-G |
β |
|
|
|
|
β |
|
|
LC-I |
β |
|
|
|
β |
|
|
|
LC-L |
β |
|
β |
β |
β |
β |
β |
|
LPIS-A |
|
β |
β |
|
|
|
|
|
LPIS-F |
|
β |
|
|
|
β |
|
|
LPIS-I |
|
β |
|
|
β |
β |
β |
|
LPIS-J |
|
β |
β |
|
β |
β |
β |
|
π Model: FLAIR-HUB_LPIS-A_swinbase-upernet
-
Encoder: swin_base_patch4_window12_384
-
Decoder: upernet
-
Metrics:
mIoU |
O.A. |
F-score |
Precision |
Recall |
22.30% |
86.63% |
31.21% |
37.26% |
31.06% |
-
Params.: 89.4
---
## General Informations
- **Contact:** flair@ign.fr
- **Code repository:** https://github.com/IGNF/FLAIR-HUB
- **Paper:** https://arxiv.org/abs/2506.07080
- **Project page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub
- **Developed by:** IGN
- **Compute infrastructure:**
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- **License:** Etalab 2.0
---
### Training Config Hyperparameters
```yaml
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
```
---
### Training Data
```yaml
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
```
---
### Training Logging
---
## Metrics
| Metric | Value |
| ---------------- | ------ |
| mIoU | 22.30% |
| Overall Accuracy | 86.63% |
| F-score | 31.21% |
| Precision | 37.26% |
| Recall | 31.06% |
| Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
| --------------------- | ------- | ----------- | ------------- | ---------- |
| grasses | 49.37 | 66.10 | 72.82 | 60.53 |
| wheat | 34.23 | 51.00 | 41.11 | 67.15 |
| barley | 13.13 | 23.21 | 40.73 | 16.23 |
| maize | 60.50 | 75.39 | 77.30 | 73.57 |
| other cereals | 3.49 | 6.74 | 8.51 | 5.57 |
| rice | 0.00 | 0.00 | 0.00 | 0.00 |
| flax/hemp/tobacco | 2.71 | 5.27 | 63.81 | 2.75 |
| sunflower | 12.59 | 22.36 | 17.40 | 31.26 |
| rapeseed | 37.98 | 55.05 | 61.15 | 50.06 |
| other oilseed crops | 0.00 | 0.00 | 0.00 | 0.00 |
| soy | 0.00 | 0.00 | 0.00 | 0.00 |
| other protein crops | 3.05 | 5.93 | 6.82 | 5.24 |
| fodder legumes | 13.26 | 23.41 | 33.03 | 18.14 |
| beetroots | 53.90 | 70.04 | 64.80 | 76.20 |
| potatoes | 7.48 | 13.92 | 11.05 | 18.81 |
| other arable crops | 19.74 | 32.97 | 33.93 | 32.07 |
| vineyard | 43.42 | 60.55 | 55.72 | 66.29 |
| olive groves | 13.55 | 23.87 | 42.01 | 16.67 |
| fruits orchards | 36.82 | 53.82 | 51.31 | 56.60 |
| nut orchards | 2.87 | 5.59 | 10.36 | 3.83 |
| other permanent crops | 14.78 | 25.75 | 66.07 | 15.99 |
| mixed crops | 1.49 | 2.93 | 6.75 | 1.87 |
| background | 88.61 | 93.96 | 92.41 | 95.56 |
---
## Inference
Aerial ROI
Inference ROI
---
## Cite
**BibTeX:**
```
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
```
**APA:**
```
Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080
```