---
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
model-index:
- name: FLAIR-HUB_LC-D_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 64.69
name: mIoU
- type: OA
value: 77.631
name: Overall Accuracy
- type: IoU
value: 83.967
name: IoU building
- type: IoU
value: 78.902
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 75.83
name: IoU impervious surface
- type: IoU
value: 57.539
name: IoU pervious surface
- type: IoU
value: 63.025
name: IoU bare soil
- type: IoU
value: 90.498
name: IoU water
- type: IoU
value: 68.274
name: IoU snow
- type: IoU
value: 54.417
name: IoU herbaceous vegetation
- type: IoU
value: 57.48
name: IoU agricultural land
- type: IoU
value: 36.857
name: IoU plowed land
- type: IoU
value: 78.136
name: IoU vineyard
- type: IoU
value: 71.93
name: IoU deciduous
- type: IoU
value: 62.922
name: IoU coniferous
- type: IoU
value: 29.421
name: IoU brushwood
library_name: pytorch
---
π FLAIR-HUB Model Collection
-
Trained on: FLAIR-HUB dataset
π
-
Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
-
Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
-
Decoders: UNet, UPerNet
-
Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
-
Class nomenclature: 15 classes for LC, 23 classes for LPIS
π Model ID |
πΊοΈ Land-cover |
πΎ Crop-types |
π©οΈ Aerial |
β°οΈ Elevation |
π°οΈ SPOT |
π°οΈ S2 t.s. |
π°οΈ S1 t.s. |
π©οΈ Historical |
LC-A |
β |
|
β |
|
|
|
|
|
LC-D |
β |
|
β |
|
|
β |
|
|
LC-F |
β |
|
β |
|
|
β |
β |
|
LC-G |
β |
|
|
|
|
β |
|
|
LC-I |
β |
|
|
|
β |
|
|
|
LC-L |
β |
|
β |
β |
β |
β |
β |
|
LPIS-A |
|
β |
β |
|
|
|
|
|
LPIS-F |
|
β |
|
|
|
β |
|
|
LPIS-I |
|
β |
|
|
β |
β |
β |
|
LPIS-J |
|
β |
β |
|
β |
β |
β |
|
π Model: FLAIR-HUB_LC-D_swinbase-upernet
-
Encoder: swin_base_patch4_window12_384
-
Decoder: upernet
-
Metrics:
mIoU |
O.A. |
F-score |
Precision |
Recall |
64.69% |
77.63% |
77.31% |
77.65% |
77.26% |
-
Params.: 93.9
---
## General Informations
- **Contact:** flair@ign.fr
- **Code repository:** https://github.com/IGNF/FLAIR-HUB
- **Paper:** https://arxiv.org/abs/2506.07080
- **Project Page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub
- **Developed by:** IGN
- **Compute infrastructure:**
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- **License:** Etalab 2.0
---
### Training Config Hyperparameters
```yaml
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] β weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- SENTINEL2_TS : [1,2,3,4,5,6,7,8,9,10]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
```
---
### Training Data
```yaml
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
```
---
### Training Logging
---
## Metrics
| Metric | Value |
| ---------------- | ------ |
| mIoU | 64.69% |
| Overall Accuracy | 77.63% |
| F-score | 77.31% |
| Precision | 77.65% |
| Recall | 77.26% |
| Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
| --------------------- | ------- | ----------- | ------------- | ---------- |
| building | 83.97 | 91.28 | 91.16 | 91.41 |
| greenhouse | 78.90 | 88.21 | 84.90 | 91.78 |
| swimming pool | 61.15 | 75.89 | 74.71 | 77.11 |
| impervious surface | 75.83 | 86.25 | 86.76 | 85.76 |
| pervious surface | 57.54 | 73.05 | 71.89 | 74.24 |
| bare soil | 63.02 | 77.32 | 73.88 | 81.09 |
| water | 90.50 | 95.01 | 95.89 | 94.15 |
| snow | 68.27 | 81.15 | 93.18 | 71.86 |
| herbaceous vegetation | 54.42 | 70.48 | 71.80 | 69.21 |
| agricultural land | 57.48 | 73.00 | 70.26 | 75.97 |
| plowed land | 36.86 | 53.86 | 53.55 | 54.18 |
| vineyard | 78.14 | 87.73 | 85.38 | 90.20 |
| deciduous | 71.93 | 83.67 | 82.34 | 85.05 |
| coniferous | 62.92 | 77.24 | 80.88 | 73.92 |
| brushwood | 29.42 | 45.47 | 48.18 | 43.04 |
---
## Inference
Aerial ROI
Inference ROI
---
## Cite
**BibTeX:**
```
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
```
**APA:**
```
Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080
```