--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover model-index: - name: FLAIR-HUB_LC-A_RVB_swintiny-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 62.007 name: mIoU - type: OA value: 75.58 name: Overall Accuracy - type: IoU value: 82.435 name: IoU building - type: IoU value: 76.304 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 74.236 name: IoU impervious surface - type: IoU value: 55.914 name: IoU pervious surface - type: IoU value: 62.431 name: IoU bare soil - type: IoU value: 88.028 name: IoU water - type: IoU value: 60.68 name: IoU snow - type: IoU value: 51.072 name: IoU herbaceous vegetation - type: IoU value: 56.233 name: IoU agricultural land - type: IoU value: 33.876 name: IoU plowed land - type: IoU value: 77.533 name: IoU vineyard - type: IoU value: 68.486 name: IoU deciduous - type: IoU value: 55.445 name: IoU coniferous - type: IoU value: 29.469 name: IoU brushwood library_name: pytorch ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_RVB_swintiny-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_tiny_patch4_window7_224-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [1,2,3] - Input normalization (custom): - AERIAL_RGBI: mean: [105.66, 111.35, 102.18] std: [52.23, 45.62, 44.30] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 62.01% | | Overall Accuracy | 75.58% | | F-score | 75.27% | | Precision | 76.11% | | Recall | 75.10% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 82.44 | 90.37 | 90.51 | 90.24 | | greenhouse | 76.30 | 86.56 | 84.06 | 89.21 | | swimming pool | 57.97 | 73.39 | 73.87 | 72.92 | | impervious surface | 74.24 | 85.21 | 85.38 | 85.05 | | pervious surface | 55.91 | 71.72 | 69.81 | 73.75 | | bare soil | 62.43 | 76.87 | 73.25 | 80.86 | | water | 88.03 | 93.63 | 93.18 | 94.09 | | snow | 60.68 | 75.53 | 94.83 | 62.76 | | herbaceous vegetation | 51.07 | 67.61 | 71.85 | 63.84 | | agricultural land | 56.23 | 71.99 | 67.08 | 77.67 | | plowed land | 33.88 | 50.61 | 50.90 | 50.32 | | vineyard | 77.53 | 87.35 | 83.85 | 91.14 | | deciduous | 68.49 | 81.30 | 79.27 | 83.43 | | coniferous | 55.44 | 71.34 | 79.03 | 65.01 | | brushwood | 29.47 | 45.52 | 44.80 | 46.27 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```