--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover library_name: pytorch model-index: - name: FLAIR-HUB_LC-A_swinlarge-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 61.868 name: mIoU - type: OA value: 76.067 name: Overall Accuracy - type: IoU value: 83.423 name: IoU building - type: IoU value: 75.669 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 75.15 name: IoU impervious surface - type: IoU value: 56.467 name: IoU pervious surface - type: IoU value: 62.006 name: IoU bare soil - type: IoU value: 88.373 name: IoU water - type: IoU value: 51.815 name: IoU snow - type: IoU value: 52.26 name: IoU herbaceous vegetation - type: IoU value: 56.434 name: IoU agricultural land - type: IoU value: 34.136 name: IoU plowed land - type: IoU value: 77.787 name: IoU vineyard - type: IoU value: 69.129 name: IoU deciduous - type: IoU value: 57.445 name: IoU coniferous - type: IoU value: 28.85 name: IoU brushwood ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_RVB_swinsmall-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_small_patch4_window7_224-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [1,2,3] - Input normalization (custom): - AERIAL_RGBI: mean: [105.66, 111.35, 102.18] std: [52.23, 45.62, 44.30] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 61.87% | | Overall Accuracy | 76.07% | | F-score | 75.11% | | Precision | 76.13% | | Recall | 74.97% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 83.42 | 90.96 | 91.14 | 90.79 | | greenhouse | 75.67 | 86.15 | 84.00 | 88.42 | | swimming pool | 59.08 | 74.28 | 73.34 | 75.24 | | impervious surface | 75.15 | 85.81 | 85.80 | 85.82 | | pervious surface | 56.47 | 72.18 | 71.49 | 72.88 | | bare soil | 62.01 | 76.55 | 72.14 | 81.53 | | water | 88.37 | 93.83 | 92.76 | 94.92 | | snow | 51.82 | 68.26 | 92.98 | 53.93 | | herbaceous vegetation | 52.26 | 68.65 | 72.10 | 65.51 | | agricultural land | 56.43 | 72.15 | 67.57 | 77.40 | | plowed land | 34.14 | 50.90 | 49.04 | 52.90 | | vineyard | 77.79 | 87.51 | 85.54 | 89.56 | | deciduous | 69.13 | 81.75 | 80.27 | 83.28 | | coniferous | 57.44 | 72.97 | 77.92 | 68.61 | | brushwood | 28.85 | 44.78 | 45.88 | 43.73 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```