--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover model-index: - name: FLAIR-HUB_LC-A_RVB_swinlarge-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 63.356 name: mIoU - type: OA value: 76.954 name: Overall Accuracy - type: IoU value: 83.972 name: IoU building - type: IoU value: 77.247 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 75.642 name: IoU impervious surface - type: IoU value: 57.941 name: IoU pervious surface - type: IoU value: 63.61 name: IoU bare soil - type: IoU value: 90.07 name: IoU water - type: IoU value: 54.777 name: IoU snow - type: IoU value: 53.235 name: IoU herbaceous vegetation - type: IoU value: 57.935 name: IoU agricultural land - type: IoU value: 38.391 name: IoU plowed land - type: IoU value: 78.814 name: IoU vineyard - type: IoU value: 69.909 name: IoU deciduous - type: IoU value: 59.468 name: IoU coniferous - type: IoU value: 30.173 name: IoU brushwood library_name: pytorch ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_RVB_swinlarge-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** http://arxiv.org/abs/2506.07080 - **Project Page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_large_patch4_window12_384-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [1,2,3] - Input normalization (custom): - AERIAL_RGBI: mean: [105.66, 111.35, 102.18] std: [52.23, 45.62, 44.30] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 63.36% | | Overall Accuracy | 76.95% | | F-score | 76.35% | | Precision | 77.04% | | Recall | 76.37% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 83.97 | 91.29 | 91.49 | 91.08 | | greenhouse | 77.25 | 87.16 | 84.38 | 90.14 | | swimming pool | 59.15 | 74.33 | 73.53 | 75.15 | | impervious surface | 75.64 | 86.13 | 86.24 | 86.02 | | pervious surface | 57.94 | 73.37 | 71.93 | 74.87 | | bare soil | 63.61 | 77.76 | 73.29 | 82.81 | | water | 90.07 | 94.78 | 94.50 | 95.05 | | snow | 54.78 | 70.78 | 92.39 | 57.37 | | herbaceous vegetation | 53.23 | 69.48 | 72.51 | 66.69 | | agricultural land | 57.93 | 73.37 | 69.54 | 77.64 | | plowed land | 38.39 | 55.48 | 53.90 | 57.16 | | vineyard | 78.81 | 88.15 | 85.33 | 91.17 | | deciduous | 69.91 | 82.29 | 81.36 | 83.24 | | coniferous | 59.47 | 74.58 | 78.84 | 70.76 | | brushwood | 30.17 | 46.36 | 46.41 | 46.31 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```