---
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LC-A_swintiny-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 62.159
name: mIoU
- type: OA
value: 76.242
name: Overall Accuracy
- type: IoU
value: 82.367
name: IoU building
- type: IoU
value: 72.114
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 74.269
name: IoU impervious surface
- type: IoU
value: 55.749
name: IoU pervious surface
- type: IoU
value: 60.933
name: IoU bare soil
- type: IoU
value: 88.453
name: IoU water
- type: IoU
value: 64.387
name: IoU snow
- type: IoU
value: 52.594
name: IoU herbaceous vegetation
- type: IoU
value: 55.365
name: IoU agricultural land
- type: IoU
value: 30.807
name: IoU plowed land
- type: IoU
value: 76.441
name: IoU vineyard
- type: IoU
value: 70.946
name: IoU deciduous
- type: IoU
value: 60.394
name: IoU coniferous
- type: IoU
value: 28.887
name: IoU brushwood
---
π FLAIR-HUB Model Collection
-
Trained on: FLAIR-HUB dataset
π
-
Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
-
Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
-
Decoders: UNet, UPerNet
-
Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
-
Class nomenclature: 15 classes for LC, 23 classes for LPIS
π Model ID |
πΊοΈ Land-cover |
πΎ Crop-types |
π©οΈ Aerial |
β°οΈ Elevation |
π°οΈ SPOT |
π°οΈ S2 t.s. |
π°οΈ S1 t.s. |
π©οΈ Historical |
LC-A |
β |
|
β |
|
|
|
|
|
LC-D |
β |
|
β |
|
|
β |
|
|
LC-F |
β |
|
β |
|
|
β |
β |
|
LC-G |
β |
|
|
|
|
β |
|
|
LC-I |
β |
|
|
|
β |
|
|
|
LC-L |
β |
|
β |
β |
β |
β |
β |
|
LPIS-A |
|
β |
β |
|
|
|
|
|
LPIS-F |
|
β |
|
|
|
β |
|
|
LPIS-I |
|
β |
|
|
β |
β |
β |
|
LPIS-J |
|
β |
β |
|
β |
β |
β |
|
π Model: FLAIR-HUB_LC-A_swintiny-upernet
-
Encoder: swin_tiny_patch4_window7_224
-
Decoder: upernet
-
Metrics:
mIoU |
O.A. |
F-score |
Precision |
Recall |
62.16% |
76.24% |
75.33% |
75.71% |
75.31% |
-
Params.: 29.4
---
## General Informations
- **Contact:** flair@ign.fr
- **Code repository:** https://github.com/IGNF/FLAIR-HUB
- **Paper:** https://arxiv.org/abs/2506.07080
- **Project page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub
- **Developed by:** IGN
- **Compute infrastructure:**
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- **License:** Etalab 2.0
---
### Training Config Hyperparameters
```yaml
- Model architecture: swin_tiny_patch4_window7_224-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] β weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
```
---
### Training Data
```yaml
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
```
---
### Training Logging
---
## Metrics
| Metric | Value |
| ---------------- | ------ |
| mIoU | 62.16% |
| Overall Accuracy | 76.24% |
| F-score | 75.33% |
| Precision | 75.71% |
| Recall | 75.31% |
| Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
| --------------------- | ------- | ----------- | ------------- | ---------- |
| building | 82.37 | 90.33 | 90.46 | 90.20 |
| greenhouse | 72.11 | 83.80 | 79.52 | 88.57 |
| swimming pool | 58.68 | 73.96 | 71.85 | 76.19 |
| impervious surface | 74.27 | 85.23 | 85.56 | 84.92 |
| pervious surface | 55.75 | 71.59 | 70.49 | 72.73 |
| bare soil | 60.93 | 75.72 | 74.02 | 77.51 |
| water | 88.45 | 93.87 | 95.17 | 92.61 |
| snow | 64.39 | 78.34 | 91.63 | 68.41 |
| herbaceous vegetation | 52.59 | 68.93 | 70.88 | 67.09 |
| agricultural land | 55.37 | 71.27 | 67.69 | 75.25 |
| plowed land | 30.81 | 47.10 | 45.73 | 48.56 |
| vineyard | 76.44 | 86.65 | 84.87 | 88.50 |
| deciduous | 70.95 | 83.00 | 81.34 | 84.73 |
| coniferous | 60.39 | 75.31 | 80.00 | 71.13 |
| brushwood | 28.89 | 44.83 | 46.43 | 43.33 |
---
## Inference
Aerial ROI
Inference ROI
---
## Cite
**BibTeX:**
```
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
```
**APA:**
```
Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080