--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover library_name: pytorch model-index: - name: FLAIR-HUB_LC-A_swintiny-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 62.159 name: mIoU - type: OA value: 76.242 name: Overall Accuracy - type: IoU value: 82.367 name: IoU building - type: IoU value: 72.114 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 74.269 name: IoU impervious surface - type: IoU value: 55.749 name: IoU pervious surface - type: IoU value: 60.933 name: IoU bare soil - type: IoU value: 88.453 name: IoU water - type: IoU value: 64.387 name: IoU snow - type: IoU value: 52.594 name: IoU herbaceous vegetation - type: IoU value: 55.365 name: IoU agricultural land - type: IoU value: 30.807 name: IoU plowed land - type: IoU value: 76.441 name: IoU vineyard - type: IoU value: 70.946 name: IoU deciduous - type: IoU value: 60.394 name: IoU coniferous - type: IoU value: 28.887 name: IoU brushwood ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_swintiny-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Project page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_tiny_patch4_window7_224-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [4,1,2] - Input normalization (custom): - AERIAL_RGBI: mean: [106.59, 105.66, 111.35] std: [39.78, 52.23, 45.62] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 62.16% | | Overall Accuracy | 76.24% | | F-score | 75.33% | | Precision | 75.71% | | Recall | 75.31% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 82.37 | 90.33 | 90.46 | 90.20 | | greenhouse | 72.11 | 83.80 | 79.52 | 88.57 | | swimming pool | 58.68 | 73.96 | 71.85 | 76.19 | | impervious surface | 74.27 | 85.23 | 85.56 | 84.92 | | pervious surface | 55.75 | 71.59 | 70.49 | 72.73 | | bare soil | 60.93 | 75.72 | 74.02 | 77.51 | | water | 88.45 | 93.87 | 95.17 | 92.61 | | snow | 64.39 | 78.34 | 91.63 | 68.41 | | herbaceous vegetation | 52.59 | 68.93 | 70.88 | 67.09 | | agricultural land | 55.37 | 71.27 | 67.69 | 75.25 | | plowed land | 30.81 | 47.10 | 45.73 | 48.56 | | vineyard | 76.44 | 86.65 | 84.87 | 88.50 | | deciduous | 70.95 | 83.00 | 81.34 | 84.73 | | coniferous | 60.39 | 75.31 | 80.00 | 71.13 | | brushwood | 28.89 | 44.83 | 46.43 | 43.33 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080