--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover library_name: pytorch model-index: - name: FLAIR-HUB_LC-A_swinlarge-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 64.8 name: mIoU - type: OA value: 77.729 name: Overall Accuracy - type: IoU value: 84.074 name: IoU building - type: IoU value: 77.355 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 75.86 name: IoU impervious surface - type: IoU value: 57.552 name: IoU pervious surface - type: IoU value: 64.144 name: IoU bare soil - type: IoU value: 90.443 name: IoU water - type: IoU value: 68.548 name: IoU snow - type: IoU value: 54.366 name: IoU herbaceous vegetation - type: IoU value: 58.198 name: IoU agricultural land - type: IoU value: 36.07 name: IoU plowed land - type: IoU value: 78.952 name: IoU vineyard - type: IoU value: 71.664 name: IoU deciduous - type: IoU value: 62.998 name: IoU coniferous - type: IoU value: 30.221 name: IoU brushwood ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_swinlarge-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_large_patch4_window12_384-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [4,1,2] - Input normalization (custom): - AERIAL_RGBI: mean: [106.59, 105.66, 111.35] std: [39.78, 52.23, 45.62] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 64.80% | | Overall Accuracy | 77.73% | | F-score | 77.40% | | Precision | 77.68% | | Recall | 77.44% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 84.07 | 91.35 | 91.80 | 90.90 | | greenhouse | 77.35 | 87.23 | 84.06 | 90.65 | | swimming pool | 61.55 | 76.20 | 75.82 | 76.58 | | impervious surface | 75.86 | 86.27 | 86.15 | 86.40 | | pervious surface | 57.55 | 73.06 | 71.24 | 74.97 | | bare soil | 64.14 | 78.16 | 75.27 | 81.28 | | water | 90.44 | 94.98 | 96.04 | 93.95 | | snow | 68.55 | 81.34 | 93.67 | 71.88 | | herbaceous vegetation | 54.37 | 70.44 | 72.85 | 68.18 | | agricultural land | 58.20 | 73.58 | 69.77 | 77.82 | | plowed land | 36.07 | 53.02 | 51.80 | 54.29 | | vineyard | 78.95 | 88.24 | 85.52 | 91.14 | | deciduous | 71.66 | 83.49 | 82.72 | 84.29 | | coniferous | 63.00 | 77.30 | 79.44 | 75.27 | | brushwood | 30.22 | 46.42 | 49.08 | 44.02 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```