---
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LC-A_convnextv2base-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 63.771
name: mIoU
- type: OA
value: 77.031
name: Overall Accuracy
- type: IoU
value: 83.5
name: IoU building
- type: IoU
value: 76.548
name: IoU greenhouse
- type: IoU
value: 59.37
name: IoU swimming pool
- type: IoU
value: 74.837
name: IoU impervious surface
- type: IoU
value: 56.544
name: IoU pervious surface
- type: IoU
value: 63.005
name: IoU bare soil
- type: IoU
value: 89.533
name: IoU water
- type: IoU
value: 67.806
name: IoU snow
- type: IoU
value: 53.766
name: IoU herbaceous vegetation
- type: IoU
value: 57.318
name: IoU agricultural land
- type: IoU
value: 34.667
name: IoU plowed land
- type: IoU
value: 78.533
name: IoU vineyard
- type: IoU
value: 70.751
name: IoU deciduous
- type: IoU
value: 61.192
name: IoU coniferous
- type: IoU
value: 29.189
name: IoU brushwood
---
π FLAIR-HUB Model Collection
-
Trained on: FLAIR-HUB dataset
π
-
Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
-
Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
-
Decoders: UNet, UPerNet
-
Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
-
Class nomenclature: 15 classes for LC, 23 classes for LPIS
π Model ID |
πΊοΈ Land-cover |
πΎ Crop-types |
π©οΈ Aerial |
β°οΈ Elevation |
π°οΈ SPOT |
π°οΈ S2 t.s. |
π°οΈ S1 t.s. |
π©οΈ Historical |
LC-A |
β |
|
β |
|
|
|
|
|
LC-D |
β |
|
β |
|
|
β |
|
|
LC-F |
β |
|
β |
|
|
β |
β |
|
LC-G |
β |
|
|
|
|
β |
|
|
LC-I |
β |
|
|
|
β |
|
|
|
LC-L |
β |
|
β |
β |
β |
β |
β |
|
LPIS-A |
|
β |
β |
|
|
|
|
|
LPIS-F |
|
β |
|
|
|
β |
|
|
LPIS-I |
|
β |
|
|
β |
β |
β |
|
LPIS-J |
|
β |
β |
|
β |
β |
β |
|
π Model: FLAIR-HUB_LC-A_convnextv2base-unet
-
Encoder: convnextv2_base
-
Decoder: upernet
-
Metrics:
mIoU |
O.A. |
F-score |
Precision |
Recall |
63.77% |
77.03% |
76.60% |
76.94% |
76.67% |
-
Params.: 90.2
---
## General Informations
- **Contact:** flair@ign.fr
- **Code repository:** https://github.com/IGNF/FLAIR-HUB
- **Paper:** https://arxiv.org/abs/2506.07080
- **Developed by:** IGN
- **Compute infrastructure:**
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- **License:** Etalab 2.0
---
### Training Config Hyperparameters
```yaml
- Model architecture: convnextv2_base-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] β weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
```
---
### Training Data
```yaml
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
```
---
### Training Logging
---
## Metrics
| Metric | Value |
| ---------------- | ------ |
| mIoU | 63.77% |
| Overall Accuracy | 77.03% |
| F-score | 76.60% |
| Precision | 76.94% |
| Recall | 76.67% |
| Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
| --------------------- | ------- | ----------- | ------------- | ---------- |
| building | 83.50 | 91.01 | 92.26 | 89.79 |
| greenhouse | 76.55 | 86.72 | 82.49 | 91.40 |
| swimming pool | 59.37 | 74.51 | 74.21 | 74.81 |
| impervious surface | 74.84 | 85.61 | 85.22 | 86.00 |
| pervious surface | 56.54 | 72.24 | 70.62 | 73.94 |
| bare soil | 63.00 | 77.30 | 73.17 | 81.93 |
| water | 89.53 | 94.48 | 95.19 | 93.78 |
| snow | 67.81 | 80.81 | 96.07 | 69.74 |
| herbaceous vegetation | 53.77 | 69.93 | 71.69 | 68.26 |
| agricultural land | 57.32 | 72.87 | 70.08 | 75.89 |
| plowed land | 34.67 | 51.49 | 50.81 | 52.18 |
| vineyard | 78.53 | 87.98 | 84.50 | 91.75 |
| deciduous | 70.75 | 82.87 | 82.33 | 83.42 |
| coniferous | 61.19 | 75.92 | 77.47 | 74.44 |
| brushwood | 29.19 | 45.19 | 47.94 | 42.74 |
---
## Inference
Aerial ROI
Inference ROI
---
## Cite
**BibTeX:**
```
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
```
**APA:**
```
Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080
```