--- license: llama3.1 language: - en base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - large language models - speech-language models - speech interaction - speech-to-speech library_name: llama-omni --- # 🦙🎧 LLaMA-Omni: Seamless Speech Interaction with Large Language Models > **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Zhengrui Ma](https://scholar.google.com.hk/citations?user=dUgq6tEAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)** [[Paper]](https://arxiv.org/abs/2409.06666) [[Model]](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni) [[Code]](https://github.com/ictnlp/LLaMA-Omni) LLaMA-Omni is a speech-language model built upon Llama-3.1-8B-Instruct. It supports low-latency and high-quality speech interactions, simultaneously generating both text and speech responses based on speech instructions. ![](images/model.png) ## 💡 Highlights - 💪 **Built on Llama-3.1-8B-Instruct, ensuring high-quality responses.** - 🚀 **Low-latency speech interaction with a latency as low as 226ms.** - 🎧 **Simultaneous generation of both text and speech responses.** - ♻️ **Trained in less than 3 days using just 4 GPUs.** ## Install 1. Clone this repository. ```shell git clone https://github.com/ictnlp/LLaMA-Omni cd LLaMA-Omni ``` 2. Install packages. ```shell conda create -n llama-omni python=3.10 conda activate llama-omni pip install pip==24.0 pip install -e . ``` 3. Install `fairseq`. ```shell git clone https://github.com/pytorch/fairseq cd fairseq pip install -e . --no-build-isolation ``` 4. Install `flash-attention`. ```shell pip install flash-attn --no-build-isolation ``` ## Quick Start 1. Download the `Llama-3.1-8B-Omni` model from 🤗[Huggingface](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni). 2. Download the `Whisper-large-v3` model. ```shell import whisper model = whisper.load_model("large-v3", download_root="models/speech_encoder/") ``` 3. Download the unit-based HiFi-GAN vocoder. ```shell wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000 -P vocoder/ wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/config.json -P vocoder/ ``` ## Gradio Demo 1. Launch a controller. ```shell python -m omni_speech.serve.controller --host 0.0.0.0 --port 10000 ``` 2. Launch a gradio web server. ```shell python -m omni_speech.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --model-list-mode reload --vocoder vocoder/g_00500000 --vocoder-cfg vocoder/config.json ``` 3. Launch a model worker. ```shell python -m omni_speech.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path Llama-3.1-8B-Omni --model-name Llama-3.1-8B-Omni --s2s ``` 4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-3.1-8B-Omni! **Note: Due to the instability of streaming audio playback in Gradio, we have only implemented streaming audio synthesis without enabling autoplay. If you have a good solution, feel free to submit a PR. Thanks!** ## Local Inference To run inference locally, please organize the speech instruction files according to the format in the `omni_speech/infer/examples` directory, then refer to the following script. ```shell bash omni_speech/infer/run.sh omni_speech/infer/examples ``` ## LICENSE Our code is released under the Apache-2.0 License. Our model, as it is built on Llama 3.1, is required to comply with the [Llama 3.1 License](https://llama.meta.com/llama3_1/license/). ## Acknowledgements - [LLaVA](https://github.com/haotian-liu/LLaVA): The codebase we built upon. - [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor. ## Citation If you have any questions, please feel free to submit an issue or contact `fangqingkai21b@ict.ac.cn`. If our work is useful for you, please cite as: ``` @article{fang-etal-2024-llama-omni, title={LLaMA-Omni: Seamless Speech Interaction with Large Language Models}, author={Fang, Qingkai and Guo, Shoutao and Zhou, Yan and Ma, Zhengrui and Zhang, Shaolei and Feng, Yang}, journal={arXiv preprint arXiv:2409.06666}, year={2024} } ```