|
[network_arguments] |
|
unet_lr = 0.75 |
|
text_encoder_lr = 0.75 |
|
network_dim = 32 |
|
network_alpha = 32 |
|
network_module = "networks.lora" |
|
network_args = [ "conv_dim=32", "conv_alpha=16",] |
|
network_train_unet_only = false |
|
|
|
[optimizer_arguments] |
|
learning_rate = 0.75 |
|
lr_scheduler = "cosine_with_restarts" |
|
lr_scheduler_num_cycles = 5 |
|
lr_warmup_steps = 34 |
|
optimizer_type = "Prodigy" |
|
optimizer_args = [ "weight_decay=0.1", "betas=[0.9,0.99]",] |
|
|
|
[training_arguments] |
|
pretrained_model_name_or_path = "sd_xl_base_1.0.safetensors" |
|
vae = "sdxl_vae.safetensors" |
|
max_train_epochs = 10 |
|
train_batch_size = 4 |
|
seed = 42 |
|
max_token_length = 225 |
|
xformers = false |
|
sdpa = true |
|
min_snr_gamma = 8.0 |
|
lowram = false |
|
no_half_vae = true |
|
gradient_checkpointing = true |
|
gradient_accumulation_steps = 1 |
|
max_data_loader_n_workers = 8 |
|
persistent_data_loader_workers = true |
|
mixed_precision = "fp16" |
|
full_bf16 = false |
|
cache_latents = true |
|
cache_latents_to_disk = true |
|
cache_text_encoder_outputs = false |
|
min_timestep = 0 |
|
max_timestep = 1000 |
|
prior_loss_weight = 1.0 |
|
|
|
[saving_arguments] |
|
save_precision = "fp16" |
|
save_model_as = "safetensors" |
|
save_every_n_epochs = 1 |
|
save_last_n_epochs = 10 |
|
|