File size: 5,067 Bytes
5ebf0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-sql-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-sql-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4719
- Precision: 0.6074
- Recall: 0.4618
- F1 Macro: 0.4864
- Accuracy: 0.5478
- F1 Binary Minimum3: 0.8854
- F1 Binary Minimum2: 0.9418

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0     | 8.5378          | 0.0326    | 0.2    | 0.0561   | 0.1632   | 0                  | 0                  |
| 0.5231        | 1.2837  | 1000  | 0.5326          | 0.5973    | 0.4176 | 0.4388   | 0.5192   | 0.8777             | 0.9339             |
| 0.5041        | 2.5674  | 2000  | 0.5038          | 0.6039    | 0.4350 | 0.4533   | 0.5348   | 0.8824             | 0.9392             |
| 0.5062        | 3.8511  | 3000  | 0.4965          | 0.6035    | 0.4452 | 0.4652   | 0.5402   | 0.8829             | 0.9411             |
| 0.498         | 5.1348  | 4000  | 0.4916          | 0.6036    | 0.4445 | 0.4634   | 0.5398   | 0.8848             | 0.9404             |
| 0.5036        | 6.4185  | 5000  | 0.4894          | 0.5963    | 0.4531 | 0.4789   | 0.5397   | 0.8842             | 0.9396             |
| 0.4968        | 7.7022  | 6000  | 0.4880          | 0.6082    | 0.4402 | 0.4595   | 0.5347   | 0.8826             | 0.9396             |
| 0.498         | 8.9859  | 7000  | 0.4835          | 0.6032    | 0.4592 | 0.4843   | 0.5440   | 0.8837             | 0.9413             |
| 0.4849        | 10.2696 | 8000  | 0.4816          | 0.6168    | 0.4555 | 0.4799   | 0.5442   | 0.8844             | 0.9412             |
| 0.4925        | 11.5533 | 9000  | 0.4821          | 0.5868    | 0.4595 | 0.4861   | 0.5422   | 0.8843             | 0.9405             |
| 0.477         | 12.8370 | 10000 | 0.4800          | 0.6117    | 0.4472 | 0.4688   | 0.5404   | 0.8849             | 0.9403             |
| 0.4753        | 14.1207 | 11000 | 0.4790          | 0.6111    | 0.4533 | 0.4737   | 0.5444   | 0.8842             | 0.9420             |
| 0.4863        | 15.4044 | 12000 | 0.4809          | 0.5849    | 0.4593 | 0.4858   | 0.5426   | 0.8847             | 0.9402             |
| 0.4794        | 16.6881 | 13000 | 0.4761          | 0.6116    | 0.4565 | 0.4820   | 0.5442   | 0.8844             | 0.9410             |
| 0.4684        | 17.9718 | 14000 | 0.4766          | 0.6044    | 0.4533 | 0.4756   | 0.5444   | 0.8852             | 0.9412             |
| 0.4814        | 19.2555 | 15000 | 0.4748          | 0.6093    | 0.4614 | 0.4842   | 0.5496   | 0.8844             | 0.9427             |
| 0.4993        | 20.5392 | 16000 | 0.4746          | 0.5977    | 0.4620 | 0.4879   | 0.5464   | 0.8849             | 0.9415             |
| 0.4788        | 21.8228 | 17000 | 0.4739          | 0.6125    | 0.4592 | 0.4809   | 0.5482   | 0.8860             | 0.9426             |
| 0.4857        | 23.1065 | 18000 | 0.4747          | 0.6190    | 0.4546 | 0.4771   | 0.5457   | 0.8858             | 0.9414             |
| 0.4709        | 24.3902 | 19000 | 0.4728          | 0.6132    | 0.4566 | 0.4800   | 0.5462   | 0.8850             | 0.9417             |
| 0.4803        | 25.6739 | 20000 | 0.4754          | 0.5999    | 0.4585 | 0.4858   | 0.5435   | 0.8856             | 0.9397             |
| 0.4731        | 26.9576 | 21000 | 0.4725          | 0.6100    | 0.4575 | 0.4805   | 0.5470   | 0.8859             | 0.9415             |
| 0.4788        | 28.2413 | 22000 | 0.4725          | 0.6087    | 0.4609 | 0.4861   | 0.5478   | 0.8861             | 0.9415             |
| 0.4594        | 29.5250 | 23000 | 0.4719          | 0.6074    | 0.4618 | 0.4864   | 0.5478   | 0.8854             | 0.9418             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1