import torch from typing import List, Union from PIL import Image from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order from transformers.tokenization_utils_base import PreTokenizedInput, TextInput from .modeling_vora import VoRAForCausalLM class VoRAProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": {}, } class VoRAProcesser(ProcessorMixin): attributes = ["image_processor", "tokenizer"] valid_kwargs = [ "chat_template", "image_token", ] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer=None, chat_template=None, image_token="", # set the default and let users change if they have peculiar special tokens in rare cases image_token_index = -200, **kwargs, ): self.image_token = image_token self.image_token_index = image_token_index super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, **kwargs: Unpack[VoRAProcessorKwargs], ): if images is None and text is None: raise ValueError("You have to specify at least one of `images` or `text`.") images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( VoRAProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: images = [[self.expand2square(image[0])] for image in images] image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) else: image_inputs = {} if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") input_ids = [self.tokenizer_vision_placeholder(t) for t in text] attention_mask = [ [1] * len(input_ids[i]) for i in range(len(input_ids)) ] text_inputs = dict( input_ids=torch.as_tensor(input_ids, dtype=torch.int64), attention_mask=torch.as_tensor(attention_mask, dtype=torch.int64), ) image_inputs['frames'] = image_inputs.pop('pixel_values') image_inputs['n_frames'] = [len(_images) for _images in images] image_inputs['vision_placeholder_index'] = self.image_token_index return BatchFeature(data={**text_inputs, **image_inputs}) def expand2square(self, pil_img: Image.Image): background_color = (0, 0, 0) width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def tokenizer_vision_placeholder(self, prompt, add_bos=False): def join_lists(*lists, sep): result = [] for i, lst in enumerate(lists): if i > 0 and sep: result.extend([sep]) result.extend(lst) return result prompt_chunks = [self.tokenizer.encode( chunk) for chunk in prompt.split(self.image_token)] input_ids = join_lists(*prompt_chunks, sep=self.image_token_index) if add_bos: input_ids = [self.tokenizer.bos_token_id] + input_ids return input_ids