|
import torch |
|
import torch.nn as nn |
|
|
|
from .configuration_vora import VoRAConfig |
|
|
|
|
|
def _get_1d_sincos_pos_embed_from_grid( |
|
embed_dim: int, pos: torch.Tensor, device: torch.device |
|
) -> torch.Tensor: |
|
omega = torch.arange(embed_dim // 2).float().to(device) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
pos = pos.reshape(-1) |
|
out = pos[:, None] * omega[None, :] |
|
emb_sin, emb_cos = torch.sin(out).to(device), torch.cos(out).to(device) |
|
emb = torch.cat([emb_sin, emb_cos], dim=1) |
|
return emb |
|
|
|
|
|
def get_sincos_pos_embed(h: int, w: int, embed_dim: int, device: torch.device) -> torch.Tensor: |
|
assert embed_dim % 2 == 0, embed_dim |
|
grid_h = torch.arange(h).float().to(device) |
|
grid_w = torch.arange(w).float().to(device) |
|
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") |
|
grid = torch.stack(grid, dim=0).to(device) |
|
grid = grid.reshape([2, 1, h, w]) |
|
emb_h = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], device) |
|
emb_w = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], device) |
|
pos_embed = torch.cat([emb_h, emb_w], dim=1) |
|
return pos_embed |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
def extra_repr(self) -> str: |
|
return f"{tuple(self.weight.shape)}, eps={self.eps}" |
|
|
|
def _norm(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
class VisionEmbedding(nn.Module): |
|
def __init__(self, |
|
config: VoRAConfig = None, |
|
hidden_size: int = 4096, |
|
): |
|
super().__init__() |
|
self.patch_size = config.patch_size |
|
self.proj = nn.Conv2d( |
|
3, |
|
hidden_size, |
|
kernel_size=(self.patch_size, self.patch_size), |
|
stride=(self.patch_size, self.patch_size), |
|
bias=True, |
|
) |
|
self.norm = RMSNorm(hidden_size, eps=1e-05) |
|
self.embed_dim = hidden_size |
|
|
|
def forward(self, pixel_values: torch.Tensor): |
|
_, _, H, W = pixel_values.shape |
|
tokens = self.norm(self.proj(pixel_values).flatten(2).transpose(1, 2)) |
|
pos_embed = get_sincos_pos_embed( |
|
H // self.patch_size, W // self.patch_size, embed_dim=self.embed_dim, device=tokens.device |
|
) |
|
tokens = tokens + pos_embed.to(tokens.device) |
|
return tokens |
|
|
|
|
|
class AIMv2PatchEmbed(nn.Module): |
|
def __init__(self, config: VoRAConfig): |
|
super().__init__() |
|
self.proj = nn.Conv2d( |
|
3, |
|
config.vision_embedding_intermediate_size, |
|
kernel_size=(config.patch_size, config.patch_size), |
|
stride=(config.patch_size, config.patch_size), |
|
) |
|
self.norm = RMSNorm(config.vision_embedding_intermediate_size, eps=config.rms_norm_eps) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class AIMv2ViTPreprocessor(nn.Module): |
|
def __init__(self, |
|
config: VoRAConfig = None, |
|
hidden_size: int = 4096, |
|
): |
|
super().__init__() |
|
num_patches = (config.image_size // config.patch_size) ** 2 |
|
self.config = config |
|
|
|
self.patchifier = AIMv2PatchEmbed(config) |
|
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.vision_embedding_intermediate_size))) |
|
self.out_proj = nn.Linear(config.vision_embedding_intermediate_size, hidden_size, bias=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, C, H, W = x.shape |
|
h_token = H // self.config.patch_size |
|
w_token = W // self.config.patch_size |
|
tokens = self.patchifier(x) |
|
_, N, _ = tokens.shape |
|
pos_embed = self.pos_embed.to(tokens.device) |
|
|
|
if N <= pos_embed.size(1): |
|
|
|
tokens = tokens + pos_embed[:, :N] |
|
else: |
|
|
|
|
|
pos_embed = pos_embed.view(1, int(pos_embed.size(1)**0.5), int(pos_embed.size(1)**0.5), -1).permute(0, 3, 1, 2) |
|
|
|
pos_embed = F.interpolate(pos_embed, size=(h_token, w_token), mode='bilinear', align_corners=False).permute(0, 2, 3, 1) |
|
|
|
pos_embed = pos_embed.view(1, N, pos_embed.size(-1)) |
|
tokens = tokens + pos_embed |
|
|
|
return self.out_proj(tokens) |
|
|
|
|
|
def build_vision_embedding(config: VoRAConfig, hidden_size): |
|
if config.vision_embedding_type == "AIMv2": |
|
return AIMv2ViTPreprocessor(config, hidden_size) |
|
return VisionEmbedding(config, hidden_size) |