siqi72 commited on
Commit
61f20b8
·
verified ·
1 Parent(s): f809b97

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1>ICLR25: Incorporating Visual Correspondence into Diffusion Model for Visual Try-On</h1>
2
+ This is the official repository for the
3
+ [Paper](*)
4
+ "Incorporating Visual Correspondence into Diffusion Model for Visual Try-On"
5
+
6
+ ## Overview
7
+ We novelly propose to explicitly capitalize
8
+ on visual correspondence as the prior to tame diffusion process instead of simply
9
+ feeding the whole garment into UNet as the appearance reference.
10
+ ## Installation
11
+ Create a conda environment & Install requirments
12
+ ```
13
+ conda create -n SPM-Diff python==3.9.0
14
+ conda activate SPM-Diff
15
+ cd SPM-Diff-main
16
+ pip install -r requirements.txt
17
+ ```
18
+ ## Semantic Point Matching
19
+ In SPM, a set of semantic points on the garment are first sampled and matched to the
20
+ corresponding points on the target person via local flow warping. Then, these 2D cues are augmented
21
+ into 3D-aware cues with depth/normal map, which act as semantic point matching to supervise
22
+ diffusion model.
23
+
24
+ You can directly download the [Semantic Point Feature](*) or follow the instructions in [preprocessing.md](*) to extract the Semantic Point Feature yourself.
25
+
26
+ ## Dataset
27
+ You can download the VITON-HD dataset from [here](https://github.com/xiezhy6/GP-VTON) <br>
28
+ For inference, the following dataset structure is required: <br>
29
+ ```
30
+ test
31
+ |-- image
32
+ |-- masked_vton_img
33
+ |-- warp-cloth
34
+ |-- cloth
35
+ |-- cloth_mask
36
+ |-- point
37
+ ```
38
+ ## Inference
39
+ Please download the pre-trained model from [Google Link](*)
40
+ ```
41
+ sh inference.sh
42
+ ```
43
+ ## Acknowledgement
44
+ Thanks the contribution of [LaDI-VTON](https://github.com/miccunifi/ladi-vton) and [GP-VTON](https://github.com/xiezhy6/GP-VTON).